Пробные задачи
Материал из MachineLearning.
(Различия между версиями)
Anastasiya (Обсуждение | вклад)
(Новая: {{Main|Численные методы обучения по прецедентам (практика, В.В. Стрижов)}} # Построить методом наименьших...)
К следующему изменению →
Версия 12:22, 11 февраля 2015
- Построить методом наименьших модулей уравнение регрессии 2ой степени по результатом опытов, которые Изображение:Опыт №7.3 21.10.14.txt.zip (x1,x2,x3 - переменные факторы, N - отклик).
- Дана выборка "Вина различных регионов". Требуется определить кластеры (регионы происхождения вин) и нарисовать результат: цветной точкой обозначен объект кластера; цветным кружком обозначен класс этого объекта, взятый из выборки. Вариант задания: определить число кластеров. Вариант задания: использовать два алгоритма, например k-means и EM, и показать сравнение результатов кластеризации на графике.
- Предложить способы визуализации наборов четырехмерных векторов, например для Fisher's iris data.
- Дан временной ряд, описывающий потребление электричества. Приблизить ряд несколькими криволинейными моделями и нарисовать спрогнозированные и исходный ряды на одном графике.
- Сгладить временной ряд Цены (объемы) на основные биржевые инструменты методом экспоненциального сглаживания. Нарисовать цветные графики сглаженных с различным рядов и исходного ряда.
- Аппроксимация выборки замкнутой кривой [1]: проверить, лежат ли точки на окружности? Сгенерировать данные самостоятельно.
- Дан временной ряд с пропусками, например [2]. Предложить способы заполнения пропусков в данных, заполнить пропуски. Для каждого способа построить гистограмму. Вариант: взять выборку без пропусков, удалить случайным образом часть данных, заполнить пропуски, сравнить с гистограммой исходной выборки.
- Дана выборка "Вина различных регионов". Выбрать два признака. Рассмотреть различные функции расстояния при классификации с помощью метода ближайшего соседа. Для каждой изобразить результат классификации в пространстве выбранных признаков.
- Для различных видов зависимости (линейная, квадратичная, логарифмическая) построить линейную регрессию и нарисовать на графике SSE-отклонения (среднеквадратичные отклонения-?). Данные сгенерировать самостоятельно или взять данные "Цена на хлеб".
- Оценить площадь единичного круга методом Монте-Карло. Построить график зависимости результата от размера выборки.
- Построить выпуклую оболочку точек на плоскости. Нарисовать график: точки и их выпуклая оболочка – замкнутая ломаная линия.
- Дана выборка: ирисы Фишера. Реализовать процедуру классификации методом решающего дерева. Проиллюстрировать результаты классификации на плоскости в пространстве двух признаков.
- Задан временной ряд – объемы почасового потребления электроэнергии (выбрать любые два дня). Аппроксимировать ряд полиномиальными моделями различных степеней (1-7). *Предложить метод определения оптимальной степени полинома.
- Задано два одномерных временных ряда различной длины. Вычислить расстояние между рядами методом динамического выравнивания.
- Сгенерировать набор точек на плоскости. Выделить и визуализировать главные компоненты.
- Аппроксимировать выборку цены на хлеб полиномиальной моделью. Нарисовать график. Пометить объекты, являющиеся выбросами, используя правило трех сигм.
- Разделить выборку ирисы Фишера на кластеры. Проиллюстрировать на графике результаты кластеризации, выделить кластеры разными цветами.
- Дана выборка из нескольких признаков, без целевого вектора Y. Например, эта https://dmba.svn.sourceforge.net/svnroot/dmba/Data/Diabets_LARS.csv Требуется указать тот признак, который хорошо описывается (в терминах линейной регрессии) остальными (такой признак обычно исключают из выборки).
- Сгладить временной ряд (см. библиотеку) скользящим средним. Взять несколько окон разной длины и наложить результат на графике друг на друга.
- Сгладить временной ряд (см. библиотеку) скользящим средним. Взять несколько окон разной длины и наложить результат на графике друг на друга.
- Показать разницу в скорости выполнения матричных операций и операций в цикле. Можно использовать в качестве примера Сингулярное разложение и другие методы линейной алгебры. Показать эффективность параллельных вычислений (parfor).
- Разобраться как работает суперпозиция функций. С помощью функции @ породить все возможные полиномы от n переменных степени не более p. Вариант: приблизить полученными полиномами временной ряд цен на хлеб (данные).
- Дан набор трехэлементных векторов. Первые два элемента нарисовать по осям абсцисс и ординат. Третий элемент отобразить как круг с пропорциональным радиусом. Пропорции подобрать исходя из чувства прекрасного. Сравнить полученный график с plot3. Что лучше?
- Дан пятиэлементный вектор. Нарисовать лицо Чернова. Что лучше - лицо Чернова или диаграмма?
- Разобраться как работает regexp в Матлабе. Сделать код, который выделяет все, что находится внутри скобок некоторого арифметического выражения.
- Разобраться как работает суперпозиция функций. С помощью функции @ породить все возможные полиномы от n переменных степени не более p.
- Разобраться как работает web-соединение и regexp. Сделать поисковый запрос по теме и сверстать из нее запись BibTeX.
- Дан временной ряд из m + 1 (случайных) точек. Приблизить m его первых точек полиномами степени от 1 до m. Вычислить среднюю ошибку в точках. Какая степень дает наибольшую ошибку?
- Повернуть и увеличить плоскую фигуру, сделать эффект приближения с вращением по кадрам.
- Заданы две матрицы. Проверить, есть ли в них пересечение – подматрица?
- Дана выборка из нескольких признаков, без целевого вектора Y. Например, эта https://dmba.svn.sourceforge.net/svnroot/dmba/Data/Diabets_LARS.csv Требуется указать тот признак, который хорошо описывается (в терминах линейной регрессии) остальными (такой признак обычно исключают из выборки).
- Дана выборка, в которой есть несколько выбросов. Известно, что она может быть описана одномерной линейной регрессией. Требуется переборным путем найти выбросы. Показать их на графике.
- Дана выборка из двух классов на плоскости. Требуется найти все объекты, которые залезли в чужой класс. Показать их на графике.
- На вход подается матрица инцидентности дерева. Функция возвращает список (вектор) вершин в порядке их посещения.
- Классифицировать цветы ириса произвольным алгоритмом, нарисовать на плоскости «самую наглядную» пару признаков, указать, что классифицировалось правильно, а что – нет.
- Дан временной ряд. По его вариационному ряду построить гистограмму из n перцентилей, нарисовать ее. Какое значение временного ряда встречается чаще всего?