Пробные задачи
Материал из MachineLearning.
(→Задача 1) |
(→Задача 1) |
||
Строка 7: | Строка 7: | ||
Классифицировать [http://archive.ics.uci.edu/ml/datasets/Credit+Approval|заемщиков кредита] с помощью [[Логистическая регрессия|логистической регрессии]]. Для оптимизации параметров использовать алгоритм [[Логистическая регрессия (пример)|Ньютона-Рафсона]] или алгоритм [[Метод градиентного спуска|градиентного спуска]]. Построить ROC-кривые для фиксированного числа разбиений. Построить ряд графиков для различных мощностей подвыборок разбиений. | Классифицировать [http://archive.ics.uci.edu/ml/datasets/Credit+Approval|заемщиков кредита] с помощью [[Логистическая регрессия|логистической регрессии]]. Для оптимизации параметров использовать алгоритм [[Логистическая регрессия (пример)|Ньютона-Рафсона]] или алгоритм [[Метод градиентного спуска|градиентного спуска]]. Построить ROC-кривые для фиксированного числа разбиений. Построить ряд графиков для различных мощностей подвыборок разбиений. | ||
Число итераций ограничить либо условием на сходимость – норма разности последовательных векторов весов не больше точности, либо числом шагов. | Число итераций ограничить либо условием на сходимость – норма разности последовательных векторов весов не больше точности, либо числом шагов. | ||
+ | |||
+ | ===Задача 2=== | ||
+ | Нарисовать траекторию пошагового спуска к минимуму [|градиентного метода] и [[Алгоритм имитации отжига|имитации отжига]]. Сравнить их работу при поиске мимимума [[SCHWEFEL.pdf|тестовой функции]]. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Решение каждой задачи должно быть визуализировано, все рисунки необходимо кратко описать. | ||
+ | |||
+ | # С помощью логистической регрессии разделить два класса точек на плоскости. Результаты изобразить на графиках (см. пример [[Численные методы обучения по прецедентам (практика, В.В. Стрижов)/Примеры| Classification using logistic regression]]). Рассмотреть случаи линейно разделимой и неразделимой выборок. | ||
+ | # Изобразить на рисунке Парето-расслоение множества точек на плоскости. (Парето-расслоение - набор последовательно вычисляемых Парето оптимальных фронтов. Первый фронт вычисляется для полной выборки и удаляется из нее. Для оставшихся данных вычисляется следующий слой и т.д) | ||
+ | # Дана выборка [http://archive.ics.uci.edu/ml/datasets/Wine "Вина различных регионов"]. Требуется определить кластеры (регионы происхождения вин) и нарисовать результат: цветной точкой обозначен объект кластера; цветным кружком обозначен класс этого объекта, взятый из выборки. Вариант задания: определить число кластеров. Вариант задания: использовать два алгоритма, например <tex>k</tex>-means и EM, и показать сравнение результатов кластеризации на графике. | ||
+ | # Сгладить временной ряд [[Временной ряд (библиотека примеров)|Цены (объемы) на основные биржевые инструменты]] методом [[Экспоненциальное сглаживание| экспоненциального сглаживания]]. Нарисовать цветные графики сглаженных с различным <tex> \alpha </tex> рядов и исходного ряда. | ||
+ | # Аппроксимация выборки замкнутой кривой [http://sourceforge.net/p/mlalgorithms/code/HEAD/tree/Group874/Group874Essay/Group874Essay.pdf?format=raw]: проверить, лежат ли точки на окружности? Сгенерировать данные самостоятельно. Построить графики для случая когда точки лежат на окружности и нет, на графиках изобразить выборку и аппроксимирующую окружность. | ||
+ | # Дан временной ряд с пропусками, например [http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations]. Предложить способы заполнения пропусков в данных, заполнить пропуски. Для каждого способа построить гистограмму. Вариант: взять выборку без пропусков, удалить случайным образом часть данных, заполнить пропуски, сравнить гистограмму восстановленной выборки с гистограммой исходной выборки. | ||
+ | # Дана выборка [http://archive.ics.uci.edu/ml/datasets/Wine "Вина различных регионов"]. Выбрать два признака. Рассмотреть различные функции расстояния при классификации с помощью [[Метод ближайших соседей| метода ближайшего соседа]]. Для каждой изобразить результат классификации в пространстве выбранных признаков. | ||
+ | # Для различных видов зависимости <tex> y = f(x) + \epsilon </tex> (линейная, квадратичная, логарифмическая) построить [[Линейная регрессия (пример)| линейную регрессию]] и нарисовать на графике SSE-отклонения (среднеквадратичные отклонения). Данные сгенерировать самостоятельно или взять данные "Цена на хлеб". | ||
+ | # Оценить площадь единичного круга методом Монте-Карло. Построить график зависимости результата от размера выборки. | ||
+ | <!-- # Построить выпуклую оболочку точек на плоскости. Нарисовать график: точки и их выпуклая оболочка – замкнутая ломаная линия. --> | ||
+ | # Дана выборка: [http://archive.ics.uci.edu/ml/datasets/Iris ирисы Фишера]. Реализовать процедуру классификации методом решающего дерева. Проиллюстрировать результаты классификации на плоскости в пространстве двух признаков. | ||
+ | # Задан временной ряд – [https://mlalgorithms.svn.sourceforge.net/svnroot/mlalgorithms/TSForecasting/TimeSeries/Sources/tsEnergyConsumption.csv объемы почасового потребления электроэнергии] (выбрать любые два дня). Аппроксимировать ряд полиномиальными моделями различных степеней (1-7). *Предложить метод определения оптимальной степени полинома. | ||
+ | # Задано два одномерных [[Временной ряд (библиотека примеров) | временных ряда]] различной длины. Вычислить расстояние между рядами методом динамического выравнивания. На графике изобразить путь наименьшей стоимости. | ||
+ | # Сгенерировать набор точек на плоскости. Выделить и визуализировать главные компоненты. | ||
+ | # Аппроксимировать выборку [https://dmba.svn.sourceforge.net/svnroot/dmba/Data/WhiteBreadPrices.csv цены на хлеб] полиномиальной моделью. Нарисовать график. Выделить объекты, являющиеся выбросами, используя правило трех сигм, и отметить их на графике. | ||
+ | # Разделить выборку [http://archive.ics.uci.edu/ml/datasets/Iris ирисы Фишера] на кластеры. Проиллюстрировать на графиках результаты кластеризации для различного числа кластеров, выделить кластеры разными цветами. | ||
+ | # Дана выборка из нескольких признаков, без целевого вектора Y. Например, эта https://dmba.svn.sourceforge.net/svnroot/dmba/Data/Diabets_LARS.csv Требуется указать тот признак, который хорошо описывается (в терминах линейной регрессии) остальными (такой признак обычно исключают из выборки). Предложить способ визуализации решения (например, с помощью ковариационной матрицы). | ||
+ | # Сгенерировать выборку случайным образом и воссстановить ее плотность [[Метод парзеновского окна| методом парзеновского окна]]. Взять несколько окон разной длины и изобразить результаты на одном рисунке. Рассмотреть различные способы порождения данных. | ||
+ | <!-- | ||
+ | # Показать разницу в скорости выполнения матричных операций и операций в цикле. Можно использовать в качестве примера [[Сингулярное разложение]] и другие методы линейной алгебры. Показать эффективность параллельных вычислений (parfor). Результаты представить в виде диаграммы (bar chart). | ||
+ | # Разобраться как работает суперпозиция функций. С помощью функции @ породить все возможные полиномы от n переменных степени не более p. Вариант: приблизить полученными полиномами временной ряд цен на хлеб [[Линейная регрессия (пример)|(данные)]]. | ||
+ | --> | ||
+ | # Дан набор трехэлементных векторов. Первые два элемента нарисовать по осям абсцисс и ординат. Третий элемент отобразить как круг с пропорциональным радиусом. Пропорции подобрать исходя из чувства прекрасного. Сравнить полученный график с plot3. Что лучше? | ||
+ | # Построить методом наименьших модулей уравнение регрессии 2ой степени по результатом опытов, данные [[Media:Опыт №7.3 21.10.14.txt.zip|прилагаются]] (x1,x2,x3 - переменные факторы, N - отклик). Вариант: сравнить с методом наименьших квадратов, построив на одном рисунке 2 графика (по оси абсцисс - истинные отклики, по оси ординат - результаты моделирования с помощью МНМ и МНК) | ||
+ | # Разобраться как работает regexp в Матлабе. Сделать код, который выделяет все, что находится внутри скобок некоторого арифметического выражения. Визуализировать работу regexp. | ||
+ | # Дан временной ряд из m + 1 (случайных) точек. Приблизить m его первых точек полиномами степени от 1 до m. Вычислить среднюю ошибку в точках. Какая степень дает наибольшую ошибку? | ||
+ | # Аппроксимировать выборку [https://dmba.svn.sourceforge.net/svnroot/dmba/Data/WhiteBreadPrices.csv цены на хлеб] полиномиальными моделями различного порядка. Построить на одном рисунке два графика: качество аппроксимации на обучении и на контроле в зависимости от степени полинома. | ||
+ | # Предложить способы визуализации наборов четырехмерных векторов, например для [http://archive.ics.uci.edu/ml/datasets/Iris Fisher's iris data]. | ||
+ | <!-- # Заданы две матрицы. Проверить, есть ли в них пересечение – подматрица? --> | ||
+ | # Дан временной [http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption ряд], описывающий потребление электричества. Приблизить ряд несколькими [[Линейная регрессия (пример)| криволинейными моделями]] и нарисовать спрогнозированные и исходный ряды на одном графике. | ||
+ | # Дана выборка, в которой есть несколько выбросов. Известно, что она может быть описана одномерной линейной регрессией. Требуется переборным путем найти выбросы. Показать их на графике. | ||
+ | # Дана выборка из двух классов на плоскости. Требуется разделить ее линейно и найти все объекты, которые залезли в чужой класс. Показать их на графике. | ||
+ | # Решается задача заполнения пропусков в социологических анкетах наиболее адекватными значениями. Основная идея: для фиксированной анкеты найти заполнить ее пропущенные поля с использованием значений соответствующих полей <tex>k</tex> ближайших соседей. Задана выборка <tex>X</tex> --- матрица, в которой элемент <tex>x_{ij}</tex> принадлежит конечному множеству <tex>\mathbb{L}_j=\{1,...,k_j,\text{NaN}\}</tex> допустимых значений <tex>j</tex>-го поля анкеты; отметка <tex>\text{NaN}</tex> означает пропуск в поле. На множестве <tex>\mathbb{L}_j</tex> задано отношение предпочтения <tex>\preceq</tex>. Например, "начальное образование" <tex>\preceq</tex> «среднее образование» <tex>\preceq</tex> «высшее образование» --- отношение линейного порядка. Требуется ввести такую функцию расстояния или метрику <tex>\rho(x_i,x_k)\rightarrow \mathbb{R}\cup\text{NaN}</tex>, которая бы обеспечивала наиболее полное восстановление пропусков, и описать процедуру восстановления. ''Дополнительно'': изменится ли ваше решение, в случае, когда каждая анкета имеет не менее одного пропуска. Вариант: каждое поле имеет не менее одного пропуска. Вариант: значительная часть элементов матрицы <tex>X</tex> пропущена. | ||
+ | |||
+ | |||
+ | <!-- # На вход подается матрица инцидентности дерева. Функция возвращает список (вектор) вершин в порядке их посещения. --> | ||
+ | <!-- # Классифицировать цветы ириса произвольным алгоритмом, нарисовать на плоскости «самую наглядную» пару признаков, указать, что классифицировалось правильно, а что – нет. --> | ||
+ | <!-- # Дан временной ряд. По его вариационному ряду построить гистограмму из n перцентилей, нарисовать ее. Какое значение временного ряда встречается чаще всего? --> | ||
+ | |||
+ | |||
+ | |||
+ | [[Категория:Учебные курсы]] | ||
===Задача 2=== | ===Задача 2=== |
Версия 15:33, 6 апреля 2016
- Короткая ссылка bit.ly/1B4NKjZ
- Решения задач, работы студентов, пример.
Задача 1
Классифицировать кредита с помощью логистической регрессии. Для оптимизации параметров использовать алгоритм Ньютона-Рафсона или алгоритм градиентного спуска. Построить ROC-кривые для фиксированного числа разбиений. Построить ряд графиков для различных мощностей подвыборок разбиений. Число итераций ограничить либо условием на сходимость – норма разности последовательных векторов весов не больше точности, либо числом шагов.
Задача 2
Нарисовать траекторию пошагового спуска к минимуму [|градиентного метода] и имитации отжига. Сравнить их работу при поиске мимимума тестовой функции.
Решение каждой задачи должно быть визуализировано, все рисунки необходимо кратко описать.
- С помощью логистической регрессии разделить два класса точек на плоскости. Результаты изобразить на графиках (см. пример Classification using logistic regression). Рассмотреть случаи линейно разделимой и неразделимой выборок.
- Изобразить на рисунке Парето-расслоение множества точек на плоскости. (Парето-расслоение - набор последовательно вычисляемых Парето оптимальных фронтов. Первый фронт вычисляется для полной выборки и удаляется из нее. Для оставшихся данных вычисляется следующий слой и т.д)
- Дана выборка "Вина различных регионов". Требуется определить кластеры (регионы происхождения вин) и нарисовать результат: цветной точкой обозначен объект кластера; цветным кружком обозначен класс этого объекта, взятый из выборки. Вариант задания: определить число кластеров. Вариант задания: использовать два алгоритма, например -means и EM, и показать сравнение результатов кластеризации на графике.
- Сгладить временной ряд Цены (объемы) на основные биржевые инструменты методом экспоненциального сглаживания. Нарисовать цветные графики сглаженных с различным рядов и исходного ряда.
- Аппроксимация выборки замкнутой кривой [1]: проверить, лежат ли точки на окружности? Сгенерировать данные самостоятельно. Построить графики для случая когда точки лежат на окружности и нет, на графиках изобразить выборку и аппроксимирующую окружность.
- Дан временной ряд с пропусками, например [2]. Предложить способы заполнения пропусков в данных, заполнить пропуски. Для каждого способа построить гистограмму. Вариант: взять выборку без пропусков, удалить случайным образом часть данных, заполнить пропуски, сравнить гистограмму восстановленной выборки с гистограммой исходной выборки.
- Дана выборка "Вина различных регионов". Выбрать два признака. Рассмотреть различные функции расстояния при классификации с помощью метода ближайшего соседа. Для каждой изобразить результат классификации в пространстве выбранных признаков.
- Для различных видов зависимости (линейная, квадратичная, логарифмическая) построить линейную регрессию и нарисовать на графике SSE-отклонения (среднеквадратичные отклонения). Данные сгенерировать самостоятельно или взять данные "Цена на хлеб".
- Оценить площадь единичного круга методом Монте-Карло. Построить график зависимости результата от размера выборки.
- Дана выборка: ирисы Фишера. Реализовать процедуру классификации методом решающего дерева. Проиллюстрировать результаты классификации на плоскости в пространстве двух признаков.
- Задан временной ряд – объемы почасового потребления электроэнергии (выбрать любые два дня). Аппроксимировать ряд полиномиальными моделями различных степеней (1-7). *Предложить метод определения оптимальной степени полинома.
- Задано два одномерных временных ряда различной длины. Вычислить расстояние между рядами методом динамического выравнивания. На графике изобразить путь наименьшей стоимости.
- Сгенерировать набор точек на плоскости. Выделить и визуализировать главные компоненты.
- Аппроксимировать выборку цены на хлеб полиномиальной моделью. Нарисовать график. Выделить объекты, являющиеся выбросами, используя правило трех сигм, и отметить их на графике.
- Разделить выборку ирисы Фишера на кластеры. Проиллюстрировать на графиках результаты кластеризации для различного числа кластеров, выделить кластеры разными цветами.
- Дана выборка из нескольких признаков, без целевого вектора Y. Например, эта https://dmba.svn.sourceforge.net/svnroot/dmba/Data/Diabets_LARS.csv Требуется указать тот признак, который хорошо описывается (в терминах линейной регрессии) остальными (такой признак обычно исключают из выборки). Предложить способ визуализации решения (например, с помощью ковариационной матрицы).
- Сгенерировать выборку случайным образом и воссстановить ее плотность методом парзеновского окна. Взять несколько окон разной длины и изобразить результаты на одном рисунке. Рассмотреть различные способы порождения данных.
- Дан набор трехэлементных векторов. Первые два элемента нарисовать по осям абсцисс и ординат. Третий элемент отобразить как круг с пропорциональным радиусом. Пропорции подобрать исходя из чувства прекрасного. Сравнить полученный график с plot3. Что лучше?
- Построить методом наименьших модулей уравнение регрессии 2ой степени по результатом опытов, данные прилагаются (x1,x2,x3 - переменные факторы, N - отклик). Вариант: сравнить с методом наименьших квадратов, построив на одном рисунке 2 графика (по оси абсцисс - истинные отклики, по оси ординат - результаты моделирования с помощью МНМ и МНК)
- Разобраться как работает regexp в Матлабе. Сделать код, который выделяет все, что находится внутри скобок некоторого арифметического выражения. Визуализировать работу regexp.
- Дан временной ряд из m + 1 (случайных) точек. Приблизить m его первых точек полиномами степени от 1 до m. Вычислить среднюю ошибку в точках. Какая степень дает наибольшую ошибку?
- Аппроксимировать выборку цены на хлеб полиномиальными моделями различного порядка. Построить на одном рисунке два графика: качество аппроксимации на обучении и на контроле в зависимости от степени полинома.
- Предложить способы визуализации наборов четырехмерных векторов, например для Fisher's iris data.
- Дан временной ряд, описывающий потребление электричества. Приблизить ряд несколькими криволинейными моделями и нарисовать спрогнозированные и исходный ряды на одном графике.
- Дана выборка, в которой есть несколько выбросов. Известно, что она может быть описана одномерной линейной регрессией. Требуется переборным путем найти выбросы. Показать их на графике.
- Дана выборка из двух классов на плоскости. Требуется разделить ее линейно и найти все объекты, которые залезли в чужой класс. Показать их на графике.
- Решается задача заполнения пропусков в социологических анкетах наиболее адекватными значениями. Основная идея: для фиксированной анкеты найти заполнить ее пропущенные поля с использованием значений соответствующих полей ближайших соседей. Задана выборка --- матрица, в которой элемент принадлежит конечному множеству допустимых значений -го поля анкеты; отметка означает пропуск в поле. На множестве задано отношение предпочтения . Например, "начальное образование" «среднее образование» «высшее образование» --- отношение линейного порядка. Требуется ввести такую функцию расстояния или метрику , которая бы обеспечивала наиболее полное восстановление пропусков, и описать процедуру восстановления. Дополнительно: изменится ли ваше решение, в случае, когда каждая анкета имеет не менее одного пропуска. Вариант: каждое поле имеет не менее одного пропуска. Вариант: значительная часть элементов матрицы пропущена.
Задача 2
Нарисовать траекторию пошагового спуска к минимуму [|градиентного метода] и имитации отжига. Сравнить их работу при поиске мимимума [SCHWEFEL.pdf|тестовой функции].
Решение каждой задачи должно быть визуализировано, все рисунки необходимо кратко описать.
- С помощью логистической регрессии разделить два класса точек на плоскости. Результаты изобразить на графиках (см. пример Classification using logistic regression). Рассмотреть случаи линейно разделимой и неразделимой выборок.
- Изобразить на рисунке Парето-расслоение множества точек на плоскости. (Парето-расслоение - набор последовательно вычисляемых Парето оптимальных фронтов. Первый фронт вычисляется для полной выборки и удаляется из нее. Для оставшихся данных вычисляется следующий слой и т.д)
- Дана выборка "Вина различных регионов". Требуется определить кластеры (регионы происхождения вин) и нарисовать результат: цветной точкой обозначен объект кластера; цветным кружком обозначен класс этого объекта, взятый из выборки. Вариант задания: определить число кластеров. Вариант задания: использовать два алгоритма, например -means и EM, и показать сравнение результатов кластеризации на графике.
- Сгладить временной ряд Цены (объемы) на основные биржевые инструменты методом экспоненциального сглаживания. Нарисовать цветные графики сглаженных с различным рядов и исходного ряда.
- Аппроксимация выборки замкнутой кривой [3]: проверить, лежат ли точки на окружности? Сгенерировать данные самостоятельно. Построить графики для случая когда точки лежат на окружности и нет, на графиках изобразить выборку и аппроксимирующую окружность.
- Дан временной ряд с пропусками, например [4]. Предложить способы заполнения пропусков в данных, заполнить пропуски. Для каждого способа построить гистограмму. Вариант: взять выборку без пропусков, удалить случайным образом часть данных, заполнить пропуски, сравнить гистограмму восстановленной выборки с гистограммой исходной выборки.
- Дана выборка "Вина различных регионов". Выбрать два признака. Рассмотреть различные функции расстояния при классификации с помощью метода ближайшего соседа. Для каждой изобразить результат классификации в пространстве выбранных признаков.
- Для различных видов зависимости (линейная, квадратичная, логарифмическая) построить линейную регрессию и нарисовать на графике SSE-отклонения (среднеквадратичные отклонения). Данные сгенерировать самостоятельно или взять данные "Цена на хлеб".
- Оценить площадь единичного круга методом Монте-Карло. Построить график зависимости результата от размера выборки.
- Дана выборка: ирисы Фишера. Реализовать процедуру классификации методом решающего дерева. Проиллюстрировать результаты классификации на плоскости в пространстве двух признаков.
- Задан временной ряд – объемы почасового потребления электроэнергии (выбрать любые два дня). Аппроксимировать ряд полиномиальными моделями различных степеней (1-7). *Предложить метод определения оптимальной степени полинома.
- Задано два одномерных временных ряда различной длины. Вычислить расстояние между рядами методом динамического выравнивания. На графике изобразить путь наименьшей стоимости.
- Сгенерировать набор точек на плоскости. Выделить и визуализировать главные компоненты.
- Аппроксимировать выборку цены на хлеб полиномиальной моделью. Нарисовать график. Выделить объекты, являющиеся выбросами, используя правило трех сигм, и отметить их на графике.
- Разделить выборку ирисы Фишера на кластеры. Проиллюстрировать на графиках результаты кластеризации для различного числа кластеров, выделить кластеры разными цветами.
- Дана выборка из нескольких признаков, без целевого вектора Y. Например, эта https://dmba.svn.sourceforge.net/svnroot/dmba/Data/Diabets_LARS.csv Требуется указать тот признак, который хорошо описывается (в терминах линейной регрессии) остальными (такой признак обычно исключают из выборки). Предложить способ визуализации решения (например, с помощью ковариационной матрицы).
- Сгенерировать выборку случайным образом и воссстановить ее плотность методом парзеновского окна. Взять несколько окон разной длины и изобразить результаты на одном рисунке. Рассмотреть различные способы порождения данных.
- Дан набор трехэлементных векторов. Первые два элемента нарисовать по осям абсцисс и ординат. Третий элемент отобразить как круг с пропорциональным радиусом. Пропорции подобрать исходя из чувства прекрасного. Сравнить полученный график с plot3. Что лучше?
- Построить методом наименьших модулей уравнение регрессии 2ой степени по результатом опытов, данные прилагаются (x1,x2,x3 - переменные факторы, N - отклик). Вариант: сравнить с методом наименьших квадратов, построив на одном рисунке 2 графика (по оси абсцисс - истинные отклики, по оси ординат - результаты моделирования с помощью МНМ и МНК)
- Разобраться как работает regexp в Матлабе. Сделать код, который выделяет все, что находится внутри скобок некоторого арифметического выражения. Визуализировать работу regexp.
- Дан временной ряд из m + 1 (случайных) точек. Приблизить m его первых точек полиномами степени от 1 до m. Вычислить среднюю ошибку в точках. Какая степень дает наибольшую ошибку?
- Аппроксимировать выборку цены на хлеб полиномиальными моделями различного порядка. Построить на одном рисунке два графика: качество аппроксимации на обучении и на контроле в зависимости от степени полинома.
- Предложить способы визуализации наборов четырехмерных векторов, например для Fisher's iris data.
- Дан временной ряд, описывающий потребление электричества. Приблизить ряд несколькими криволинейными моделями и нарисовать спрогнозированные и исходный ряды на одном графике.
- Дана выборка, в которой есть несколько выбросов. Известно, что она может быть описана одномерной линейной регрессией. Требуется переборным путем найти выбросы. Показать их на графике.
- Дана выборка из двух классов на плоскости. Требуется разделить ее линейно и найти все объекты, которые залезли в чужой класс. Показать их на графике.
- Решается задача заполнения пропусков в социологических анкетах наиболее адекватными значениями. Основная идея: для фиксированной анкеты найти заполнить ее пропущенные поля с использованием значений соответствующих полей ближайших соседей. Задана выборка --- матрица, в которой элемент принадлежит конечному множеству допустимых значений -го поля анкеты; отметка означает пропуск в поле. На множестве задано отношение предпочтения . Например, "начальное образование" «среднее образование» «высшее образование» --- отношение линейного порядка. Требуется ввести такую функцию расстояния или метрику , которая бы обеспечивала наиболее полное восстановление пропусков, и описать процедуру восстановления. Дополнительно: изменится ли ваше решение, в случае, когда каждая анкета имеет не менее одного пропуска. Вариант: каждое поле имеет не менее одного пропуска. Вариант: значительная часть элементов матрицы пропущена.