Участник:Александр Двойнев/песочница
Материал из MachineLearning.
(Новая: == Введение == Ставится задача вычислить интеграл вида {{eqno |1}} ::<tex>J=\int_a^bf(t)dt,</tex> где <tex>a</tex> и <tex>b</tex> - ниж...) |
(→Случай с равномерной сеткой) |
||
Строка 147: | Строка 147: | ||
Подставим {{eqref|8}} в {{eqref|7}} и получим окончательное выражение для <tex>J</tex>: | Подставим {{eqref|8}} в {{eqref|7}} и получим окончательное выражение для <tex>J</tex>: | ||
- | ::<tex> J\;\approx\;\tau\sum_{i=2}^{N-2}f_i+\frac{\tau}{ | + | ::<tex> J\;\approx\;\tau\sum_{i=2}^{N-2}f_i+\frac{\tau}{12}(5f_0+13f_1+13f_{N-1}+5f_N)-\frac{\tau^3}{36}(c_2+c_N)</tex> |
Несмотря на то, что <tex>c_2</tex> и <tex>c_N</tex> все равно придется вычислять методом прогонки, точность и скорость вычисления приближенного значения интеграла будут увеличены за счет сокращения числа слагаемых. | Несмотря на то, что <tex>c_2</tex> и <tex>c_N</tex> все равно придется вычислять методом прогонки, точность и скорость вычисления приближенного значения интеграла будут увеличены за счет сокращения числа слагаемых. |
Версия 16:46, 10 ноября 2008
Содержание |
Введение
Ставится задача вычислить интеграл вида
где и - нижний и верхний пределы интегрирования; - непрерывная функция на отрезке .
Введем на отрезке интегрирования сетку, определим значения функции в узлах сетки. Пусть имеется совокупность узлов Тогда интервал разобьется на участки Пусть также задана таблица Представим интеграл (1) в виде суммы интегралов по частичным отрезкам:
Сущность большинства методов вычисления определённых интегралов состоит в замене подынтегральной функции на отрезке аппроксимирующей функцией , для которой можно легко записать первообразную в элементарных функциях, т.е.
где S - приближённое значение интеграла; R - погрешность вычисления интеграла. Лучше всего изучена замена алгебраическим многочленом.
Изложение метода
Возьмём в (3) в качестве аппроксимирующей функции кубический сплайн:
- где
Коэффициенты вычисляются по следующим формулам:
Тогда интеграл (4) запишется как сумма интегралов от сплайнов:
Последняя формула упрощается при подстановке в неё выражений (5a), (5b) и (5d) для коэффициентов и
Нетрудно видеть, что матрица для решения СЛАУ (5c) есть трёхдиагональная матрица с диагональным преобладанием. Поэтому коэффициенты можно вычислить с помощью метода прогонки.
Анализ метода и ошибок
Анализ формулы (6) показывает, что первый член в правой части совпадает с формулой трапеций. Следовательно, второй член характеризует поправку к методу трапеций, которую дает использование сплайнов.
Как следует из формулы (φ), коэффициенты выражаются через вторые производные
Это позволяет оценить второй член правой части формулы (6):
где - вторая производная в некоторой внутренней точке. Полученная оценка показывает, что добавка к формуле трапеций, которую дает использование сплайнов, компенсирует погрешность самой формулы трапеций.
Числовой пример
Рассмотрим функцию Вычислим с помощью сплайн-квадратур приближенное значение интеграла
и исследуем поведение погрешности. Результаты работы программы приведены в следующей таблице:
N J ε 5 -8.88236 7.28236 10 -3.61479 2.01479 20 -2.13136 0.53136 50 -1.68776 0.087758 100 -1.62217 0.022169 200 -1.60557 0.00557 500 -1.60089 0.00089 1000 -1.60022 0.00022 2000 -1.60006 0.00005
Здесь N - число отрезков, на которые разбивается интервал [0,4], J - приблизительное значение интеграла, ε - ошибка.
Как видно из таблицы, при малых N (особенно при N=5) ошибка невероятно велика. Однако с ростом N ошибка стремительно убывает, и приблизительное значение интеграла сходится к правильному значению.
Рекомендации программисту
Пример программы
Ниже приведен пример программы на языке C++, считающей приближенное значение интеграла с помощью сплайн-квадратур: Splineint.zip [0.7Кб]
Некоторые комментарии по работе с программой:
В 5-й строке const int N=100;
N - число отрезков
В 7-й строке const double a=1,b=6;
и - пределы интегрирования.
В 49-й строке f[i]=0.6*x*x*x-3*x*x+3*x;
f[i] - интегрируемая функция.
Случай с равномерной сеткой
Пусть на отрезке задана равномерная сетка, т.е. Тогда выражение (6) перепишется в виде:
Просуммируем уравнения (5c) от i=2 до N. Получим:
Подставим (8) в (7) и получим окончательное выражение для :
Несмотря на то, что и все равно придется вычислять методом прогонки, точность и скорость вычисления приближенного значения интеграла будут увеличены за счет сокращения числа слагаемых.
Заключение
Итак, мы получили, что погрешность сплайн-квадратуры меньше, чем погрешность метода трапеций. Однако алгоритм интегрирования с помощью сплайнов сложнее алгоритмов методов трапеций и Симпсона за счет необходимости решения СЛАУ для опрееления коэффициентов сплайнов Также при решении СЛАУ теряется точность. Поэтому рационально использовать сплайн-квадратуры в комплексе, когда сплайны применяются для сглаживания зависимостей, обработки эксперимениальных данных и т.п.
Ссылки
Список литературы
- http://www.intuit.ru/department/calculate/calcmathbase/7/1.html
- http://mathalgo.blogspot.com/2007/11/blog-post.html
- http://myhomepage.h17.ru/Lect06/lect06.htm#02
- А.Е. Мудров. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. - Томск:МП "РАСКО", 1991.