Алгебра над алгоритмами и эвристический поиск закономерностей

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Участники спецсеминара)
Строка 45: Строка 45:
-
 
+
== Участники ==
-
Заседния в предыдущих семестрах:
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2016-2017 уч. года]].
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2015-2016 уч. года]].
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2014-2015 уч. года]].
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2013-2014 уч. года | Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2013—2014 уч. года (осенний семестр)]].
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2012-2013 уч. года (весенний семестр)]].
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2012-2013 уч. года (осенний семестр)]].
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2011-2012 уч. года (весенний семестр)]].
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2011-2012 уч. года (осенний семестр)]].
+
-
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2010-2011 уч. года (весенний семестр)]].
+
-
 
+
-
== Текущие задания участников спецсеминара ==
+
-
 
+
-
{{tip|
+
-
Список источников для потенциальных докладов.
+
-
'''Доклады по статьям'''
+
-
* http://jmlr.org/proceedings/
+
-
* https://nips.cc/Conferences/2015/AcceptedPapers
+
-
'''Доклады по авторам'''
+
-
* Hans-Peter Kriegel [[https://scholar.google.de/citations?user=DBf9LC4AAAAJ&hl=de%7C]]
+
-
* Pedro Domingos http://homes.cs.washington.edu/~pedrod/
+
-
* Samory Kpotufe http://www.princeton.edu/~samory/
+
-
* Randal Olson http://www.randalolson.com/publications/
+
-
* Jure Leskovec http://cs.stanford.edu/people/jure/
+
-
}}
+
{| class="wikitable"
{| class="wikitable"
|-
|-
! Участник
! Участник
-
! Задание (каждый сам заполняет свою ячейку)
+
! План работы
! Комментарий
! Комментарий
|-
|-
-
| '''Нижибицкий Евгений''' (А3)
+
| '''Каюмов Эмиль Марселевич ''' (617)
-
| Подготовка плана-проспекта диссертации, статьи в журнале из списка ВАК (подача до декабря).
+
| [https://github.com/emilkayumov/rubik-cube-rl]
|
|
|-
|-
-
| '''Остапец Андрей''' (А3)
+
| '''Амир Мирас Сабыргалиулы''' (617)
-
| Подготовка плана-проспекта диссертации, статьи в журнале из списка ВАК (подача до декабря).
+
| https://github.com/amirassov/data-science-bowl
|
|
|-
|-
-
| '''Кудрявцев Георгий''' (517)
+
| '''Коваленко Павел Антонович''' (617)
-
| Выбор темы курсовой работы
+
|
|
|
|-
|-
-
| '''Рысьмятова Анастасия''' (517)
+
| '''Иванов Сергей Максимович''' (517)
-
| Выбор темы для курсовой работы
+
|
|
|
|-
|-
-
| '''Вихрева Мария''' (517)
+
| '''Mедведев Алексей Владимирович''' (417)
-
| Выбор темы для курсовой работы
+
|
|
|
|-
|-
-
| '''Каюмов Эмиль''' (417)
+
| '''Демин Георгий Александрович''' (317)
-
| Выявление ишемической болезни сердца по сигналам кардиограмм.
+
|
|
|
|-
|-
-
| '''Никишин Евгений''' (417)
+
| '''Лебедь Федор Сергеевич''' (317)
-
| ВКР "Снижение размерности больших массивов данных"
+
|
|
|
|-
|-
-
| '''Севастопольский Артём''' (417)
+
| '''Попов Дмитрий Олегович''' (317)
-
| ВКР "Методы распознавания глаукомы на основе нейронных сетей"
+
|
|
|
|-
|-
-
| '''Иванов Сергей''' (317)
+
|'''Гурьянова Валерия Николаевна''' (асп)
-
| КР "Методы детектирования и исследования аномалий"
+
| [https://valeriiads.blogspot.com/]
-
|
+
-
|-
+
-
| '''Трофимов Михаил''' (МФТИ)
+
-
| Подготовка плана-проспекта диссертации
+
-
|
+
-
|-
+
-
| '''Гущин Александр''' (МФТИ)
+
-
| Выбор темы для ВКР
+
-
|
+
-
|-
+
-
|'''Кибитова Валерия''' (617)
+
-
| МД "Анализ биомедицинских сигналов при помощи методов машинного обучения."
+
-
|
+
-
|-
+
-
|'''Гурьянов Алексей''' (617)
+
-
| МД "Стратегии исследования окружений в обучении с подкреплением с непрерывным пространством состояний."
+
-
|
+
-
|-
+
-
|'''Игнатов Алексей''' (А1)
+
-
| Выбор темы научной работы
+
|
|
|}
|}
 +
 +
 +
 +
Заседния в предыдущих семестрах:
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2016-2017 уч. года]].
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2015-2016 уч. года]].
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2014-2015 уч. года]].
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2013-2014 уч. года | Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2013—2014 уч. года (осенний семестр)]].
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2012-2013 уч. года (весенний семестр)]].
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2012-2013 уч. года (осенний семестр)]].
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2011-2012 уч. года (весенний семестр)]].
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2011-2012 уч. года (осенний семестр)]].
 +
* [[Алгебра над алгоритмами и эвристический поиск закономерностей/Заседания 2010-2011 уч. года (весенний семестр)]].
== Участники прошлых лет ==
== Участники прошлых лет ==

Версия 20:44, 3 сентября 2018

Руководитель спецсеминара: д.ф.-м.н., профессор Дьяконов Александр Геннадьевич

Направления работы на спецсеминаре

См. также «Правила для постоянных участников».


Информация для второкурсников!


Содержание

В рамках работы на спецсеминаре есть два направления исследования:

  1. Теоретическое. Проводится в рамках алгебраического подхода к решению задач распознавания. Суть подхода: на алгоритмах, которые решают задачи обработки и анализа данных, специальным образом вводятся алгебраические операции. Например, можно складывать алгоритмы (получается опять алгоритм), умножать и т. д. Среди получаемых алгебраических выражений над «естественными» алгоритмами есть высокоэффективные алгоритмы. На спецсеминаре рассматриваются вопросы: как их строить, анализировать, реализовывать на ЭВМ и т. д. и т. п. Здесь же возникают задачи современной теории интерполяции: построения функций специального вида, заданных частично. Можно заниматься дискретным направлением: решать подобные задачи для функций, принимающих значения 0 и 1. Данное направление представляет особую ценность студентам, которые хотят получить самостоятельные результаты в науке и продолжить обучение в аспирантуре.
  2. Прикладное. Решаются реальные прикладные задачи анализа данных (data mining). Например, построение рекомендательных систем, прогнозирование свойств динамических графов (в том числе и графов социальных сетей), прогнозирование поведения потребителей, анализ метаданных, классификация сигналов головного мозга, классификация сигналов-показаний работы механизмов, настройка спам-фильтров, автоматическая рубрикация текстов, прогнозирование финансовых временных рядов. От студентов требуется желание глубоко понять задачу (данные и скрытые в них закономерности), умение быстро осваивать новые методы (в незнакомой области), хорошо программировать, выдвигать гипотезы и фантазировать (последнее очень важно).

Заседания спецсеминара

В осеннем семестре заседания будут проходить по четвергам в ауд. 637, начало в 18:00. Вход свободный. Начало - 29 сентября.


Заседания 2018—2019 уч. года

Дата Докладчик Доклад Материалы
10 сентября 2018 Медведев Алексей Владимирович (417) «Мета-обучение»

Аннотация

Материалы
17 сентября 2018 ??? ???


Участники

Участник План работы Комментарий
Каюмов Эмиль Марселевич (617) [1]
Амир Мирас Сабыргалиулы (617) https://github.com/amirassov/data-science-bowl
Коваленко Павел Антонович (617)
Иванов Сергей Максимович (517)
Mедведев Алексей Владимирович (417)
Демин Георгий Александрович (317)
Лебедь Федор Сергеевич (317)
Попов Дмитрий Олегович (317)
Гурьянова Валерия Николаевна (асп) [2]


Заседния в предыдущих семестрах:

Участники прошлых лет

Год выпуска Участники
2018 бак

Иванов Сергей

2017 бак

Никишин Евгений

Каюмов Эмиль

Севастопольский Артём

2018 маг

Викулин Всеволод

Кудрявцев Георгий

  • Курсовая работа «Методы сравнения траекторий».
  • Доклад «Сверточные сети и метод водораздела для семантической сегментации RGBD-видео».
  • Доклад «Закон Бенфорда».

Рысьмятова Анастасия

Вихрева Мария

2017 маг

Кибитова Валерия

Гурьянов Алексей

аспиранты 1 г.о.

Трофимов Михаил


аспиранты 3 г.о.

Нижибицкий Евгений

Остапец Андрей

  • Курсовая работа «Обзор методов линейного регрессионного анализа».
  • Доклад «Deep Learning».
  • Курсовая работа «Применение методов регрессионного анализа для решения задачи прогнозирования временных финансовых рядов».
  • Доклад «Анализ сигналов сенсорных устройств».
  • Остапец А. А. Анализ сигналов сенсорных устройств // Сборник тезисов XXI Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2014». Издательский отдел факультета вычислительной математики и кибернетики МГУ имени М. В. Ломоносова, 2014. С. 41-43.
  • Дипломная работа «Анализ сигналов сенсорных устройств».
  • Остапец А. А. Анализ сигналов сенсорных устройств // Сборник тезисов лучших дипломных работ факультета ВМК МГУ 2014 года. Издательский отдел факультета вычислительной математики и кибернетики МГУ имени М. В. Ломоносова, 2014. С. 44-46.
  • Остапец А. А. Определение местоположения телефона по данным сенсоров // Машинное обучение и анализ данных. 2014. T. 1, № 9. C. 1232—1245
  • Остапец А. А. Алгебраический подход к задаче иерархической классификации текстов // Сборник тезисов XXII Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2015». Издательский отдел факультета вычислительной математики и кибернетики МГУ имени М. В. Ломоносова, 2015. С. 54-55.
  • Остапец А. А. Определение категории видеозаписи на основе текстовых метаданных // Сборник тезисов XXIII Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2016». Издательский отдел факультета вычислительной математики и кибернетики МГУ имени М. В. Ломоносова, 2016. С. 132-134.
  • Остапец А. А. Об одном подходе к решению задачи автоматической классификации товаров на основе текстовой информации // Материалы Международной научной конференции "Современные методы и проблемы теории операторов и гармонического анализа и их приложения - VI", Издательский центр ДГТУ, Ростов, 2016. С. 164-165.

Выпускники спецсеминара

Год выпускаВыпускники
Аспирант, 2010

Карпович Павел

  • Карпович П. А. k-сингулярные системы точек в пространстве l1 // Сборник тезисов XVI Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2009», секция «Вычислительная математика и кибернетика», М: МАКС Пресс, 2009. — C.34.
  • Карпович П. А. Эффективная реализация алгоритмов распознавания образов // Журнал вычислительной математики и математической физики, 2009, Т. 49, № 8. C.1510-1516.
  • Карпович П. А. О задаче разделения системы точек в пространсте l1 на подсистемы с невырождеными матрицами попарных расстояний // Тезисы конференции МФТИ, Секция проблем интеллектуального анализа данных, распознавания и прогнозирования. — М.: ГОУ ВПО «Московский физико-технический институт (государственный университет)», 2009. — С. 52.
  • Карпович П. А., Дьяконов А. Г. Критерий k-сингулярности систем точек в алгебраическом подходе к распознаванию // 14-я Всероссийская конференция «Математические методы распознавания образов» Владимирская обл., г. Суздаль, 21-26 сентября 2009 г.: Сборник докладов. — М. МАКС Пресс, 2009. С. 41-44.
  • Карпович П.А. Разделение системы точек на подмножества с невырожденными матрицами попарных расстояний // Материалы XVII Международной конференции студентов и аспирантов по фундаментальным наукам «Ломоносов 2010». – М.: Изд. отдел ВМиК МГУ, МАКС Пресс, 2010. – С. 87-88.
  • Карпович П.А. Критерии k-сингулярности и разделение 1-сингулянрных систем // Вестник Московского университета. Секция 15. “Вычислительная математика и кибернетика” – 2010. № 4.
  • Карпович П.А. Дьяконов А.Г. K-сингулярные системы точек, приложения в алгебраическом подходе к распознаванию // Тезисы докладов Международной научной конференции ИОИ-8 Кипр, Пафос - 2010.

Диссертация: «K-сингулярные системы точек в алгебраическом подходе к распознаванию образов» (2010, успешно защищена 18.02.2011 по специальности 01.01.09).

2015 бак

Славнов Константин

2015

Рыжков Александр

Харациди Олег

2014

Нижибицкий Евгений

Остапец Андрей

Фонарев Александр

Ромов Петр Алексеевич

  • раздолбай
2013

Бобрик Ксения

  • Тема работы «Прогнозирование временных рядов».

Ермушева Александра

Кириллов Александр

  • Курсовая работа «Матричное разложение в задаче анализа текстов».
  • Дипломная работа «Дизъюнктивные нормальные формы специального вида для функций с малым количеством нулей».
  • Тема преддипломной практики «Задача оптимизации и моделирования при настройке рекомендательной системы».
  • Второе место на конкурсе Интернет-математика «Relevance Prediction Challenge» (лучший результат среди российских участников).
  • Figurnov M., Kirillov A. Linear combination of random forests for the Relevance Prediction Challenge — 2012.
  • Кириллов А. Н. Предсказание связности графа. // Сборник тезисов XIX Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2012». Секция «Вычислительная математика и кибернетика». М.: МАКС Пресс, 2012, с. 101—102.
  • Кириллов А. Н. Сравнение методов предсказания появления связей в графе. // Сборник докладов 9-й международной конференции «Интеллектуализация обработки информации-2012», М: Торус Пресс, 2012. — С. 629—632.
  • Фигурнов М. В., Кириллов А. Н. Линейная комбинация случайных лесов в задаче предсказания релевантности документов // Сборник докладов 9-й международной конференции «Интеллектуализация обработки информации-2012», М: Торус Пресс, 2012. — С. 648—651.

Кондрашкин Дмитрий (перевёлся на другой спецсеминар)


Фигурнов Михаил

  • Курсовая работа «Метрические критерии k-сингулярности».
  • Дипломная работа «Системы точек с вырожденными матрицами попарных расстояний».
  • Тема преддипломной практики «Технология разработки рекомендательных систем».
  • Второе место на конкурсе Интернет-математика «Relevance Prediction Challenge» (лучший результат среди российских участников).
  • Figurnov M., Kirillov A. Linear combination of random forests for the Relevance Prediction Challenge — 2012.
  • Фигурнов М. В. Линейная комбинация случайных лесов в задаче предсказания релевантности документов. // Сборник тезисов XIX Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2012». Секция «Вычислительная математика и кибернетика». М.: МАКС Пресс, 2012, с. 107—109.
  • Фигурнов М. В., Кириллов А. Н. Линейная комбинация случайных лесов в задаче предсказания релевантности документов // Сборник докладов 9-й международной конференции «Интеллектуализация обработки информации-2012», М: Торус Пресс, 2012. — С. 648—651.
2012

Платонова Елена

2010

Ахламченкова Ольга

  • Дипломная работа «Машинное обучение для ранжирования документов».

Токарева (Одинокова) Евгения

2009

Власова Юлия

  • Дипломная работа «Генерация признаков в задаче классификации сигналов» (PDF, 929 КБ).
  • Власова Ю. В. Применение генетических алгоритмов в задаче классификации сигналов (приложение в BCI) // Сборник тезисов XVI Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2009», секция «Вычислительная математика и кибернетика», М: МАКС Пресс, 2009. — C.17.
  • Власова Ю. В. Применение генетических алгоритмов в задаче классификации сигналов (приложение в BCI) // Доклады 14-й Всероссийской конференции «Математические методы распознавания образов», М.: МАКС Пресс, 2009, С. 96-99.

Логинов Вячеслав

  • Дипломная работа «Прогнозирование временных рядов с помощью рекуррентных нейросетей с откликом».

Фёдорова Валентина

  • Дипломная работа «Локальные методы прогнозирования временных рядов».
  • Федорова В. П. Локальные методы прогнозирования временных рядов // Сборник тезисов XVI Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2009», секция «Вычислительная математика и кибернетика», М: МАКС Пресс, 2009. — C.87.

Чучвара Алексндра (бакалавр)

2008

Ломова Дарья

  • Дипломная работа «Выделение закономерностей во временных рядах методом анализа главных компонент».

Вершкова Ирина

  • Дипломная работа «Локальная и глобальная согласованность в интеллектуальном анализе данных».
2007

Кнорре Анна

  • Дипломная работа «Надежность алгоритмов распознавания, основанных на синтезе дизъюнктивных нормальных форм».

Карпович Павел

  • Дипломная работа «Эффективная реализация алгоритмов распознавания образов».

Сиваченко Евгений

  • Дипломная работа «Нейросетевой поиск логических закономерностей».
2006

Ховратович (Курятникова) Татьяна

  • Дипломная работа «Критерии корректности в задачах распознавания образов с малым числом признаков».
  • Курятникова Т. С. Критерии корректности алгебраического и линейного замыкания АВО для малых размерностей // Материалы XII Международной конференции студентов, аспирантов и молодых учёных «Ломоносов», секция «Вычислительная математика и кибернетика». М.: Изд. отд. ВМиК МГУ, 2006. — c. 32-33.

Мошин Николай

  • Дипломная работа «Эффективная реализация алгоритмов решения задачи выполнимости».
2005

Каменева Наталия

  • Дипломная работа «Эффективные логические алгоритмы распознавания, основанные на синтезе ДНФ».

Силкин Леонид

  • Дипломная работа «Оценка разделяющей способности признаков при кодировании информации в задачах распознавания».

Некоторые решаемые прикладные задачи

  • Прогнозирование временных рядов По характеристикам процесса в прошлом предсказать поведение в будущем. Знание о прошлом может быть неполным или ошибочным. Типичный пример: прогнозирование денежных сумм, которые будут сниматься с банкомата в течение следующей недели.
  • Классификация технических сигналов и сигналов головного мозга По описанию изменения некоторой характеристики процесса необходимо определить её класс. Например, по электрокортикограмме определить ментальное состояние человека. При этом обучающая выборка (данные, которые у нас есть) была собрана достаточно давно, а тестирование алгоритма будет проводиться потом (при изменённых внешних условиях, а следовательно, при изменённых характеристиках данных).
  • Фильтрация спама Настроить спам-фильтр на некотором универсальном обучающем множестве (данных спам-ловушек) так, чтобы он хорошо работал на компьютере конкретного пользователя (без дополнительной донастройки).
  • Иерархическая классификация текстов Написать алгоритм автоматической категоризации документов. Например, новостные рассылки необходимо распределить по каталогам «спорт/футбол», «спорт/биатлон», «музыка/концерты», «музыка/рок/исполнители» и т. д.
  • Ранжирование документов на основе обучающего множества Написать алгоритм, который оценивает релевантность документа поисковому запросу. Для фиксированного запроса упорядочить документы (используя их признаковые описания) так, чтобы порядок отражал «адекватность» запроса.
  • Прогноз связности графа социальной сети Предсказать изменения динамического графа социальной сети, в частности, появление новых рёбер.
  • Прогнозирование успешности грантов и проектов По описанию заявки оценить перспективность выполнения данного проекта.
  • Разработка рекомендательного алгоритма, который делает актуальные предложения купить какой-то товар, воспользоваться услугой или прочитать материал.
  • Предсказывание визитов покупателей и сумм покупок для сети супермаркетов Разработка алгоритма, который предсказывает дату первого визита и сумму покупки каждого клиента.
  • Оценка фотографий по метаданным Прогноз «интересности» фото-материалов на основе анализа названия, описания, GPS-координат съёмки и т.п.
  • Задача кредитного скоринга Прогнозирование надёжности клиента банка по обязательствам выплаты процентов кредита.
Личные инструменты