Участник:Василий Ломакин/Критерий Уилкоксона двухвыборочный

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
-
'''Критерий Уилкоксона (Вилкоксона) двухвыборочный''' — [[непараметрический статистический критерий]], используемый для проверки гипотезы о равенстве средних двух независимых выборок. Выборки взяты из закона распределения, отличного от нормального, либо данные измерены с использованием [[Теория измерений|качественной шкалы]]. Метод следует использовать, когда нет информации о дисперсии выборок. В случае равных дисперсий следует применять более мощный [[Критерий_Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]]. Имеется [[Критерий_Уилкоксона_для_связных_выборок|аналог]] критерия Уилкоксона для связанных повторных наблюдений.
+
'''Критерий Уилкоксона (Вилкоксона) двухвыборочный''' — [[непараметрический статистический критерий]], используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием [[Теория измерений|порядковой шкалы]]. Имеется [[Критерий_Уилкоксона_для_связных_выборок|аналог]] критерия Уилкоксона для связанных повторных наблюдений.
== Пример задачи ==
== Пример задачи ==
-
Подготовка роженицы к родам - см Лапач стр. 118.
+
 
 +
Задача - сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является [[Теория измерений|порядковой]]).
== Описание критерия ==
== Описание критерия ==
Строка 10: Строка 11:
'''Дополнительное предположение:''' обе выборки [[простая выборка|простые]], объединённая выборка [[независимая выборка|независима]];
'''Дополнительное предположение:''' обе выборки [[простая выборка|простые]], объединённая выборка [[независимая выборка|независима]];
-
'''[[Нулевая гипотеза]]''' <tex>H_0:\; </tex> обе выборки имеют одинаковое распеределение, то есть извлечены из одной генеральной совокупности. Следствием этого является равенство средних.
+
'''[[Нулевая гипотеза]]''' <tex>H_0:\; \mathbb{P} \{ x<y \} = 1/2. </tex>
'''Вычисление статистики критерия:'''
'''Вычисление статистики критерия:'''
Строка 17: Строка 18:
#:<tex>R_x = \sum_{i=1}^m r(x_i);</tex>
#:<tex>R_x = \sum_{i=1}^m r(x_i);</tex>
#:<tex>R_y = \sum_{i=1}^n r(y_i);</tex>
#:<tex>R_y = \sum_{i=1}^n r(y_i);</tex>
-
# Если размеры выборок совпадают (<tex>m=n</tex>), то значение статистики <tex>W</tex> будет равняется одной из сумм рангов <tex>R_x</tex> или <tex>R_y</tex> (любой).
+
# Если размеры выборок совпадают (<tex>m=n</tex>), то значение статистики <tex>W</tex> будет равняется одной из сумм рангов <tex>R_x</tex> или <tex>R_y</tex> (любой). Если же выборки не равны, то <tex>W = R_x</tex>, то есть сумме рангов, соответствующей меньшей выборке.
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>):
-
Против альтернативы <tex>H_1:\;</tex> ????
+
Против альтернативы <tex>H_1:\; \mathbb{P} \{ x < y \} \neq 1/2</tex>:
:если <tex>W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right]</tex> , то нулевая гипотеза отвергается. Здесь <tex>W_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] табличного распределения Уилкоксона с параметрами <tex>m,\,n</tex>.
:если <tex>W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right]</tex> , то нулевая гипотеза отвергается. Здесь <tex>W_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] табличного распределения Уилкоксона с параметрами <tex>m,\,n</tex>.
Строка 29: Строка 30:
Рассмотрим нормированную и центрированную статистика Уилкоксона:
Рассмотрим нормированную и центрированную статистика Уилкоксона:
-
:<tex>\tilde W = \frac{2W - m(m + n + 1) + 1}{sqrt{\frac{mn(m + n + 1)}{3}}}</tex>;
+
:<tex>\tilde W = \frac{W - \frac{m(m + n + 1)}{2}}{sqrt{\frac{mn(m + n + 1)}{12}}}</tex>;
<tex>\tilde W</tex> асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы <tex>H_1</tex>) отвергается, если <tex> |\tilde W| > \Phi_{1-\alpha/2} </tex>, где <tex>\Phi_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] стандартного нормального распределения.
<tex>\tilde W</tex> асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы <tex>H_1</tex>) отвергается, если <tex> |\tilde W| > \Phi_{1-\alpha/2} </tex>, где <tex>\Phi_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] стандартного нормального распределения.
-
Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до <tex>m = n = 8</tex>.
+
Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до <tex>m = n = 8</tex>.<ref>Лапач С. Н. Статистика в науке и бизнесе. — 161 с.</ref>
 +
 
 +
При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:
-
При наличии связок необходимо учесть их с помощью поправки. Выражение под корнем в знаменателе необходимо заменить на следующее:
+
:<tex>\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2}</tex><ref>Кобзарь А. И. Прикладная математическая статистика. — 454 c.</ref><ref>Лагутин М. Б. Наглядная математическая статистика. — 206 с.</ref>
-
:<tex>\frac{mn}{12}(m + n + 1) - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(m + n)(m + n + 1)},</tex>
+
:где <tex>k</tex> - количество только тех связок, в которые входят ранги как одной, так и другой выборок, <tex>t_1, \ldots, t_k</tex> - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину <tex>\tilde W</tex> не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1.
-
:где <tex>k</tex> - количество только тех связок, в которые входят ранги как одной, так и другой выборок, <tex>t_1, \ldots, t_k</tex> - их размеры.
+
== Применение критерия ==
-
== Свойства и границы применимости критерия ==
+
В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок в случае, когда нет предположений о дисперсиях.<ref>Лапач С. Н. Статистика в науке и бизнесе. — 160 с.</ref> В случае равных дисперсий рекомендуется применять [[Критерий_Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]].<ref>Лапач С. Н. Статистика в науке и бизнесе. — 118 с.</ref> Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда <tex>\mathbb{P} \{ x<y \} = 1/2</tex>, и медианы выборок не совпадают. При этом можно сказать, что недостатки критерия Уилкоксона не являются исключением, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны.<ref>''Орлов А. И.'' Эконометрика. — §4.5</ref> При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки.
-
== История ==
+
== Примечания ==
 +
<references/>
== Литература ==
== Литература ==
# ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
# ''Лагутин М. Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
# ''Лапач С. Н. , Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
# ''Лапач С. Н. , Чубенко А. В., Бабич П. Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
-
# ''Орлов А. И.'' Эконометрика. — М.: Экзамен, 2003. — 576 с. (§4.5. Какие гипотезы можно проверять с помощью двухвыборочного критерия Вилкоксона?)
+
# ''Орлов А. И.'' Эконометрика. — М.: Экзамен, 2003. — 576 с.
 +
# ''Кобзарь А. И.'' Прикладная математическая статистика. — М.: Физматлит, 2006. — 454 с.
== Ссылки ==
== Ссылки ==
* [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез.
* [[Проверка статистических гипотез]] — о методологии проверки статистических гипотез.
 +
* [[Критерий Уилкоксона-Манна-Уитни]]
 +
* [[Критерий Уилкоксона для связных выборок]]

Версия 21:02, 12 декабря 2009

Критерий Уилкоксона (Вилкоксона) двухвыборочныйнепараметрический статистический критерий, используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием порядковой шкалы. Имеется аналог критерия Уилкоксона для связанных повторных наблюдений.

Содержание

Пример задачи

Задача - сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является порядковой).

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R};\; m \le n, в противном случае следует поменять выборки местами.

Дополнительное предположение: обе выборки простые, объединённая выборка независима;

Нулевая гипотеза H_0:\; \mathbb{P} \{ x<y \} = 1/2.

Вычисление статистики критерия:

  1. Построить общий вариационный ряд объединённой выборки x^{(1)} \leq \cdots \leq x^{(m+n)} и найти ранги r(x_i),\; r(y_i) всех элементов обеих выборок в общем вариационном ряду.
  2. Рассчитать суммы рангов, соответствующих обеим выборкам:
    R_x = \sum_{i=1}^m r(x_i);
    R_y = \sum_{i=1}^n r(y_i);
  3. Если размеры выборок совпадают (m=n), то значение статистики W будет равняется одной из сумм рангов R_x или R_y (любой). Если же выборки не равны, то W = R_x, то есть сумме рангов, соответствующей меньшей выборке.

Критерий (при уровне значимости \alpha):

Против альтернативы H_1:\; \mathbb{P} \{ x < y \} \neq 1/2:

если W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right] , то нулевая гипотеза отвергается. Здесь W_{\alpha} есть \alpha-квантиль табличного распределения Уилкоксона с параметрами m,\,n.

Асимптотический критерий:

Рассмотрим нормированную и центрированную статистика Уилкоксона:

\tilde W = \frac{W - \frac{m(m + n + 1)}{2}}{sqrt{\frac{mn(m + n + 1)}{12}}};

\tilde W асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы H_1) отвергается, если  |\tilde W| > \Phi_{1-\alpha/2} , где \Phi_{\alpha} есть \alpha-квантиль стандартного нормального распределения.

Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до m = n = 8.[1]

При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:

\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2}[2][3]
где k - количество только тех связок, в которые входят ранги как одной, так и другой выборок, t_1, \ldots, t_k - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину \tilde W не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1.

Применение критерия

В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок в случае, когда нет предположений о дисперсиях.[4] В случае равных дисперсий рекомендуется применять U-критерий Манна-Уитни.[5] Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда \mathbb{P} \{ x<y \} = 1/2, и медианы выборок не совпадают. При этом можно сказать, что недостатки критерия Уилкоксона не являются исключением, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны.[6] При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки.

Примечания

  1. Лапач С. Н. Статистика в науке и бизнесе. — 161 с.
  2. Кобзарь А. И. Прикладная математическая статистика. — 454 c.
  3. Лагутин М. Б. Наглядная математическая статистика. — 206 с.
  4. Лапач С. Н. Статистика в науке и бизнесе. — 160 с.
  5. Лапач С. Н. Статистика в науке и бизнесе. — 118 с.
  6. Орлов А. И. Эконометрика. — §4.5

Литература

  1. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
  2. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
  3. Орлов А. И. Эконометрика. — М.: Экзамен, 2003. — 576 с.
  4. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 454 с.

Ссылки

Личные инструменты