Участник:Василий Ломакин/Критерий Уилкоксона двухвыборочный
Материал из MachineLearning.
Строка 18: | Строка 18: | ||
#:<tex>R_x = \sum_{i=1}^m r(x_i);</tex> | #:<tex>R_x = \sum_{i=1}^m r(x_i);</tex> | ||
#:<tex>R_y = \sum_{i=1}^n r(y_i);</tex> | #:<tex>R_y = \sum_{i=1}^n r(y_i);</tex> | ||
- | # Если размеры выборок совпадают (<tex>m=n</tex>), то значение статистики <tex>W</tex> будет равняется одной из сумм рангов <tex>R_x</tex> или <tex>R_y</tex> (любой). Если же выборки не равны, то <tex>W = R_x</tex>, то есть сумме рангов, соответствующей меньшей выборке. | + | # Если размеры выборок совпадают (<tex>m=n</tex>), то значение статистики <tex>W</tex> будет равняется одной из сумм рангов <tex>R_x</tex> или <tex>R_y</tex> (любой). Если же выборки не равны, то <tex>W = R_x</tex>, то есть сумме рангов, соответствующей меньшей выборке. Заметим, что статистика <tex>W</tex> линейно связана со статистикой [[Критерий Уилкоксона-Манна-Уитни|U-критерия Манна-Уитни]]. |
- | + | ||
- | Заметим, что статистика <tex>W</tex> линейно связана со статистикой [[Критерий Уилкоксона-Манна-Уитни|U-критерия Манна-Уитни]]. | + | |
'''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>): | '''Критерий''' (при [[уровень значимости|уровне значимости]] <tex>\alpha</tex>): | ||
Строка 26: | Строка 24: | ||
Против альтернативы <tex>H_1:\; \mathbb{P} \{ x < y \} \neq 1/2</tex>: | Против альтернативы <tex>H_1:\; \mathbb{P} \{ x < y \} \neq 1/2</tex>: | ||
- | :если <tex>W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right]</tex> , то нулевая гипотеза отвергается. Здесь <tex>W_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] табличного распределения Уилкоксона с параметрами <tex>m,\,n</tex>. | + | :если <tex>W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right]</tex> , то нулевая гипотеза отвергается. Здесь <tex>W_{\alpha}</tex> есть <tex>\alpha</tex>-[[квантиль]] табличного распределения Уилкоксона с параметрами <tex>m,\,n</tex>. <ref>Кобзарь А. И. Прикладная математическая статистика. — ??? c.</ref> |
'''Асимптотический критерий''': | '''Асимптотический критерий''': | ||
Строка 40: | Строка 38: | ||
При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее: | При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее: | ||
- | :<tex>\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2}</tex><ref>Кобзарь А. И. Прикладная математическая статистика. — 454 c.</ref><ref>Лагутин М. Б. Наглядная математическая статистика. — 206 с.</ref> | + | :<tex>\left{ \frac{mn(n+m+1)}{12} \left[ 1 - \frac{\sum^k_{i = 1}t_i(t_i^2-1)}{(n+m)(n+m-1)(n+m+1)} \right] \right}^{1/2},</tex><ref>Кобзарь А. И. Прикладная математическая статистика. — 454 c.</ref><ref>Лагутин М. Б. Наглядная математическая статистика. — 206 с.</ref> |
:где <tex>k</tex> - количество только тех связок, в которые входят ранги как одной, так и другой выборок, <tex>t_1, \ldots, t_k</tex> - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину <tex>\tilde W</tex> не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1. | :где <tex>k</tex> - количество только тех связок, в которые входят ранги как одной, так и другой выборок, <tex>t_1, \ldots, t_k</tex> - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину <tex>\tilde W</tex> не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1. | ||
Строка 46: | Строка 44: | ||
== Применение критерия == | == Применение критерия == | ||
- | В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок | + | В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок. Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда <tex>\mathbb{P} \{ x<y \} = 1/2</tex>, и средние выборок не совпадают.<ref>Орлов А. И. Эконометрика. — 79 с.</ref> При этом надо заметить, что данный недостаток не является редкостью, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны. При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки. <ref>Орлов А. И. Эконометрика. — 83 с.</ref> |
+ | |||
+ | == Критерий Вилкоксона и [[Критерий Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]] == | ||
+ | |||
+ | Статистики критериев Вилкоксона и Вилкоксона-Манна-Уитни линейно связаны, поэтому, по сути, нет смысла говорить о двух различных критериях.<ref>Орлов А. И. Эконометрика. — 75 c.</ref> Оба они проверяют одну и ту же гипотезу и их границы применимости так же совпадают. В то же время в литературе можно встретить рекомендации использовать критерий Вилкоксона для проверки равенства средних, когда нет предположений о дисперсиях,<ref>Лапач С. Н. Статистика в науке и бизнесе. — 160 с.</ref>, а в случае равных дисперсий применять [[Критерий_Уилкоксона-Манна-Уитни|U-критерий Манна-Уитни]].<ref>Лапач С. Н. Статистика в науке и бизнесе. — 118 с.</ref> | ||
+ | |||
+ | Проведём эксперимент: будем строить график достигаемого уровня значимости (p-value) как функцию размера выборок и параметров распределения, усреднённого по нескольким десяткам экспериментов. | ||
+ | |||
+ | <График> | ||
== Примечания == | == Примечания == |
Версия 20:37, 24 декабря 2009
Критерий Уилкоксона (Вилкоксона) двухвыборочный — непараметрический статистический критерий, используемый для оценки различий между двумя выборками, взятыми из закона распределения, отличного от нормального, либо измеренными с использованием порядковой шкалы. Имеется аналог критерия Уилкоксона для связанных повторных наблюдений. Критерий является ранговым, поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.
Содержание |
Пример задачи
Задача - сравнить две методики подготовки роженицы к родам. Сравнивается эффективность по оценке состояния новорожденного в баллах (шкала является порядковой).
Описание критерия
Заданы две выборки в противном случае следует поменять выборки местами.
Дополнительное предположение: обе выборки простые, объединённая выборка независима;
Вычисление статистики критерия:
- Построить общий вариационный ряд объединённой выборки и найти ранги всех элементов обеих выборок в общем вариационном ряду.
- Рассчитать суммы рангов, соответствующих обеим выборкам:
- Если размеры выборок совпадают (), то значение статистики будет равняется одной из сумм рангов или (любой). Если же выборки не равны, то , то есть сумме рангов, соответствующей меньшей выборке. Заметим, что статистика линейно связана со статистикой U-критерия Манна-Уитни.
Критерий (при уровне значимости ):
Против альтернативы :
- если , то нулевая гипотеза отвергается. Здесь есть -квантиль табличного распределения Уилкоксона с параметрами . [1]
Асимптотический критерий:
Рассмотрим нормированную и центрированную статистика Уилкоксона:
- ;
асимптотически имеет стандартное нормальное распределение. Нулевая гипотеза (против альтернативы ) отвергается, если , где есть -квантиль стандартного нормального распределения.
Приближение можно использовать, если размер хотя бы одной из выборок превышает 25. Если размеры выборок равны, то данная аппроксимация хорошо работает до .[2]
При наличии связок необходимо учесть их с помощью поправки. Выражение в знаменателе необходимо заменить на следующее:
- где - количество только тех связок, в которые входят ранги как одной, так и другой выборок, - их размеры. Совпадения, целиком состоящие из элементов одной и той же выборки, на величину не влияют. Наблюдения, не совпадающие с другими, рассматриваются как связки размера 1.
Применение критерия
В биологических и эконометрических приложениях метод часто используется для проверки гипотезы о равенстве средних двух независимых выборок. Вообще говоря, данное использование критерия некорректно. Можно построить примеры, когда , и средние выборок не совпадают.[5] При этом надо заметить, что данный недостаток не является редкостью, о многих популярных в математической статистике критериях можно сказать, что они не позволяют проверять те гипотезы, с которыми традиционно связаны. При применении подобных критериев к анализу реальных данных необходимо тщательно взвешивать их достоинства и недостатки. [6]
Критерий Вилкоксона и U-критерий Манна-Уитни
Статистики критериев Вилкоксона и Вилкоксона-Манна-Уитни линейно связаны, поэтому, по сути, нет смысла говорить о двух различных критериях.[7] Оба они проверяют одну и ту же гипотезу и их границы применимости так же совпадают. В то же время в литературе можно встретить рекомендации использовать критерий Вилкоксона для проверки равенства средних, когда нет предположений о дисперсиях,[8], а в случае равных дисперсий применять U-критерий Манна-Уитни.[9]
Проведём эксперимент: будем строить график достигаемого уровня значимости (p-value) как функцию размера выборок и параметров распределения, усреднённого по нескольким десяткам экспериментов.
<График>
Примечания
- ↑ Кобзарь А. И. Прикладная математическая статистика. — ??? c.
- ↑ Лапач С. Н. Статистика в науке и бизнесе. — 161 с.
- ↑ Кобзарь А. И. Прикладная математическая статистика. — 454 c.
- ↑ Лагутин М. Б. Наглядная математическая статистика. — 206 с.
- ↑ Орлов А. И. Эконометрика. — 79 с.
- ↑ Орлов А. И. Эконометрика. — 83 с.
- ↑ Орлов А. И. Эконометрика. — 75 c.
- ↑ Лапач С. Н. Статистика в науке и бизнесе. — 160 с.
- ↑ Лапач С. Н. Статистика в науке и бизнесе. — 118 с.
Литература
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.
- Орлов А. И. Эконометрика. — М.: Экзамен, 2003. — 576 с.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — §4.5.
Ссылки
- Проверка статистических гипотез — о методологии проверки статистических гипотез.
- Критерий Уилкоксона-Манна-Уитни
- Критерий Уилкоксона для связных выборок