Прикладная алгебра (курс лекций, С.И. Гуров)
Материал из MachineLearning.
Обзорный курс для студентов 3-го потока ВМК МГУ по основам алгебры (группы, кольца, поля, частично-упорядоченные множества) и её приложениям в кодировании и комбинаторике.
Лектор: Гуров Сергей Исаевич
Ассистент: Кропотов Д.А.
Свои вопросы по курсу и пожелания можно направлять письмом по адресу bayesml@gmail.com, в название письма просьба добавлять [ПА15]
В осеннем семестре 2015/2016 уч. г. занятия проходят на ВМК по понедельникам в ауд. П-8а, начало в 14-35.
Новости
30.11.15 Выложены результаты контрольной работы от 9 ноября.
24.11.15 Показ незачётных работ контрольной работы и обсуждение задач контрольной состоится во вторник, 1 декабря, в ауд. П-8а. Начало в 18-10.
16.11.15 В связи с болезнью лектора занятия по курсу 16 ноября отменяются.
29.10.15 Контрольная работа состоится 9 ноября (понедельник), начало в 14-35. Студенты групп 320, 321 и 323 пишут работу в ауд. П-8, остальные -- в ауд. П-8а.
Контрольная работа
В программе курса предусмотрена письменная контрольная работа. Успешное написание контрольной работы является обязательным условием допуска к экзамену по курсу. При отсутствии допуска студент пишет контрольную работу на экзамене и, в случае успеха, сдает экзамен на первой пересдаче. При написании контрольной работы разрешается пользоваться любыми бумажными материалами, а также калькуляторами. Использование электронных устройств (кроме калькуляторов) запрещено.
Материалы
Программа курса
Конечные поля (поля Галуа)
- Группы и кольца (напоминание)
- Поле вычетов по модулю простого числа
- Вычисление элементов в конечных полях
- Линейная алгебра над конечным полем
- Корни многочленов над конечным полем
- Существование и единственность поля Галуа из элементов
- Циклические подпространства
- Решение задач
Коды, исправляющие ошибки
- Помехоустойчивое кодирование, блоковое кодирование, коды Хэмминга
- Групповые (линейные) коды
- Циклические коды
- Коды БЧХ
- Решение задач
Теория перечисления Пойя
- Действие группы на множестве
- Применение леммы Бернсайда для решения комбинаторных задач
- Применение теоремы Пойя для решения комбинаторных задач
Некоторые вопросы теории частично упорядоченных множеств
- Основные понятия теории ч.у. множеств
- Операции над ч.у. множествами
- Линеаризация
- Модели Крипке
- Решение задач
Алгебраические решётки
- Решётки: определения, основные свойства
- Модулярные и дистрибутивные решётки
- Применение теории решёток к задаче классификации
Литература
- Воронин В.П. Дополнительные главы дискретной математики, ф-т ВМК, 2002.
- Гуров С.И. Булевы алгебры, упорядоченные множества, решетки: определения, свойства, примеры. Либроком, 2013.
- Журавлев Ю.И., Флеров Ю.А., Вялый М.Н. Дискретный анализ. Основы высшей алгебры. М3-Пресс, 2007.
- Лидл Р., Нидеррайтер Г. Конечные поля: в 2-х т. Мир, 1988.
- Нефедов В.Н., Осипова В.А. Курс дискретной математики, МАИ, 1992.
- Ромащенко А.Е., Румянцев А.Ю., Шень А. Заметки по теории кодирования. МЦНМО, 2011.
- Lin S., Costello D. Error Control Coding Fundamentals and Applications. Prentice-Hall, 1983.
См. также
Страница кафедры математических методов прогнозирования ВМК МГУ