Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары

Материал из MachineLearning.

Перейти к: навигация, поиск
 
   
Кафедральные курсы
Спецкурсы/спецсеминары
Новости
Расписание
Учебный план
Персональный состав
Материалы
Диссертации/дипломные работы
Просеминар
  Тел. +7-495-939-4202
e-mail: Изображение:MMP_email.jpg
Ученый секретарь: О.А. Кравцова
Все контакты

Содержание


Расписание основных занятий

Расписание спецкурсов и спецсеминаров в весеннем семестре

Пара Понедельник Вторник Среда Четверг Пятница
8:45 – 10:20 Спецкурс Методы и технологии анализа данных, Майсурадзе Арчил Ивериевич, к.ф.-м.н.

Спецкурс Нейросетевые методы обработки изображений, Китов Виктор Владимирович, к.ф.-м.н.

10:30 – 12:05

Логика высказываний, Гуров Сергей Исаевич, к.ф.-м.н.

ПСАД, Сенько Олег Валентинович, д.ф.-м.н.
12:15 – 13:50

Логика высказываний, Гуров Сергей Исаевич, к.ф.-м.н.
14:35 – 16:10
16:20 – 17:55 Спецкурс Анализ графов и функций сходства, Майсурадзе Арчил Ивериевич, к.ф.-м.н.
18:05 – 19:40 Спецкурс Аналитическиие модели данных и их визуализация, Майсурадзе Арчил Ивериевич, к.ф.-м.н. Методы машинного обучения и поиск закономерностей в данных, Сенько Олег Валентинович, д.ф.-м.н.

Спецсеминар Анализ слабоструктурированной и метрической информации для бакалавров, Майсурадзе Арчил Ивериевич, к.ф.-м.н.

Спецкурс, Сенько Олег Валентинович, д.ф.-м.н.


Спецсеминар Сравнение объектов в интеллектуальном анализе данных для студентов магистратуры, Майсурадзе Арчил Ивериевич, к.ф.-м.н.

Учебно-научные спецсеминары Интеллектуальный анализ данных: новые задачи и методы (магистры) Гуров Сергей Исаевич, к.ф.-м.н. Для бакалавров: Задачи обработки сигналов (бакалавры). Гуров Сергей Исаевич, к.ф.-м.н.

Майсурадзе Арчил Ивериевич, к.ф.-м.н. и Миронов Андрей Михайлович, к.ф.-м.н

Спецкурс Задачи и алгоритмы вычислительной геометрии, Местецкий Леонид Моисеевич, д.т.н., профессор

Спецкурс Вероятностное тематическое моделирование, Воронцов Константин Вячеславович, д.ф.-м.н., профессор РАН

20:00 – 21:35

Расписание спецкурсов и спецсеминаров в осеннем семестре

Пара Понедельник Вторник Среда Четверг Пятница
8:45 – 10:20
10:30 – 12:05
12:15 – 13:50
14:35 – 16:10
16:20 – 17:55
18:05 – 19:40
20:00 – 21:35


Спецкурсы

Спецсеминары

Архив курсов и семинаров

  • Анализ информации, В.К. Леонтьев.
  • Аналитические модели данных и их визуализация, А.И. Майсурадзе.
  • Введение в машинное обучение, А.Г. Дьяконов, для бакалавров.
    Спецкурс предназначен бакалаврам младших курсов (1-2) для ознакомления с машинным обучением (Machine Learning) "с нуля". В начале существенное время уделяется языку программирования Python, специализированным библиотекам (numpy, pandas, scikit-learn) и средам программирования (Jupyter notebook). Курс рекомендуется студентам, которые хотят продолжить обучение на кафедре математических методов прогнозирования. Для бакалавров старших курсов 3го потока лектор читает более продвинутую версию этого курса в виде обязательного потокового.
  • Восстановление зависимостей в больших массивах данных, О.В. Красоткина.
    Целью данного курса является систематическое изучение распределённых файловых систем (таких, как например, Hadoop) как инструмента для создания параллельных реализаций алгоритмов машинного обучения на больших массивах данных. В ходе курса студенты получат навык использования возможностей модели распределённых вычислений MapReduce для параллельных вычислений над очень большими наборами данных в компьютерных кластерах. В ходе курса рассматриваются параллельные реализации таких основных алгоритмов машинного обучения как регрессия, классификация, кластеризация, коллаборативная фильтрация, классификация в метрических пространствах и т.д. Так же в рамках курса студентам будет предложено разработать собственные параллельные реализации алгоритмов восстановления зависимостей. Курс ориентирован на студентов, знакомых с основными концепциями и алгоритмами машинного обучения.
  • Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
    Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
  • Извлечение информации из изображений, И.Б. Гуревич.
    В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
  • Исчисления высказываний классической и интуиционистской логик, С.И. Гуров.
    В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
  • Компьютерные методы обработки сигналов, О.В. Красоткина.
    Целью данного курса является систематическое изучение задач, теоретических методов и алгоритмов компьютерного анализа экспериментальных данных, упорядоченных вдоль некоторой оси. Курс лекций включает изучение базовых вопросов дискретизации сигналов по времени, получения их цифрового представления, цифровой фильтрации, спектрально-корреляционного анализа. Большое внимание уделяется вопросам построения и оценивания моделей нестационарных сигналов на основе марковской теории случайных процессов. Задачей курса является предоставить студентам уникальные инструменты, позволяющие решать конкретные прикладные задачи из различных областей знаний: миробиоологии, экономики, финансов, техники и технологии.
  • Логико-статистические модели в распознавании, прогнозировании и интеллектуальном анализе данных, О.В. Сенько.
    Рассматриваются методы интеллектуального анализа данных, основанные на выделении в многомерном пространстве прогностических переменных областей, в которых значения прогнозируемой переменной достоверно отличаются от средних значений по всей выборке. Верификация выявленных закономерностей проводится с помощью рандомизированных перестановочных тестов. Приводятся примеры использования рассматриваемых методов при решении разнообразных прикладных задач.
  • Математические методы анализа текстов, В.В. Китов.
    В курсе даются математические подходы к автоматическому анализу и извлечению информации из текстов. Изучается обработка и парсинг текста: 1) на уровне слов (определение морфологических характеристик, частей речи), 2) на уровне предложений (определение субъекта, объекта, действия, дополнений), 3) на уровне фрагмента текста (определение именованных сущностей) и 4) на уровне коллекции документов (извлечение основных тем, представленных в коллекции). Далее изученные методы обработки текстов используются для классификации текстов по категориям, эффективной визуализации содержимого больших текстовых коллекций, извлечения фактов из текстов для наполнения баз данных фактов, представленных онтологиями. Спецкурс предполагает знание теории вероятностей, линейной алгебры, математического анализа и основ машинного обучения. В качестве основных инструментов работы с текстами будет использоваться язык программирования питон с научными библиотеками, модуль по обработке текстов NLTK, а также публично доступная онтология WordNet.
  • Методы и технологии машинного обучения, О.В. Сенько, А.И. Майсурадзе.
  • Методы оптимизации в машинном обучении, Д.А. Кропотов, А.О. Родоманов.
    В спецкурсе рассматриваются классические и современные методы непрерывной оптимизации, а также особенности их применения для задач оптимизации, возникающих в машинном обучении. Основной упор в изложении делается на практические аспекты реализации и использования методов. Спецкурс поддерживается практическими заданиями.
  • Модели распознавания, Козлов Вадим Никитович.
    В курсе представлены как классические подходы к распознаванию образов (дискриминантный подход в детерминированной и вероятностной ипостасях, структурно-лингвистический, тестовый и алгебраический подходы), так и разработки последнего времени, включая те, которые делались в МГУ. Курс является существенно расширенным и усложненным вариантом курса Распознающие системы, прочитанного автором в интернете на сайтах образовательной организации Универсариум. Приглашаются студенты 2-4 курсов, все желающие.
  • Нестатистический анализ данных (Non-statistical methods of data mining and classification), В.В.Рязанов, для бакалавров.
    Основная цель спецкурса состоит в изложении основанных на оптимизационных, дискретных и эвристических подходах методов анализа данных. Будут рассмотрены логические модели распознавания (классификации с учителем) и анализа разнотипных многомерных данных, методы оптимизации моделей распознавания, алгоритмы поиска скрытых логических закономерностей и связей по признаковым описаниям, методы создания качественных моделей объектов, ситуаций, явлений или процессов. Будут рассмотрены практические численные методы решения данных задач, и их применения в медицине, бизнесе, химии, технике и других областях. The aim is to present a special course based on optimization, discrete and heuristic approaches of data mining. The logical models of supervised classification, techniques to optimize models of classification, algorithms for finding hidden logical regularities will be considered. Приглашаются бакалавры.
  • Теория надёжности обучения по прецедентам, К.В. Воронцов.
    Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
  • Шаманство в анализе данных (для студентов 2 курса ВМК МГУ), А.Г. Дьяконов.
    Первая лекция: "Что такое машинное обучение и анализ данных?" Понедельник 02.03.2015 16:20 ауд.504 Курс читается для второкурсников, которые выбирают кафедру и научного руководителя, знакомит с некоторыми направлениями исследований, которые выполняются на кафедре математических методов прогнозирования. В первой лекции даётся обзор основных задач машинного обучения, рассматриваются приложения, описываются потребности современных компаний в решении подобных задач.





Ссылки

http://vmk.somee.com — страница со спецкурсами и спецсеминарами факультета ВМК.

Личные инструменты