Статистический анализ данных (курс лекций, К.В.Воронцов)/2010

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Задание 1. Исследование свойств одномерных статистических критериев на модельных данных

Необходимо провести исследование одного или нескольких классических критериев проверки статистических гипотез. Интерес представляет поведение достигаемого уровня значимости (p-value) как функции размера выборок и параметров распределения. В соответствии с индивидуальными параметрами задания необходимо указанным способом сгенерировать одну или несколько выборок из заданного распределения, выполнить проверку гипотезы при помощи соответствующего критерия, а затем многократно повторить эту процедуру для различных значений параметров. По результатам расчётов необходимо построить требуемые в задании графики, среди которых могут быть следующие:

  1. график зависимости достигаемого уровня значимости от значений параметров при однократном проведении эксперимента;
  2. график зависимости достигаемого уровня значимости от значений параметров, усреднённого по большому количеству повторений эксперимента (например, по 100, 500, 1000 повторений);
  3. график с эмпирическими оценками мощности критерия для разных значений параметров.

В качестве оценки мощности принимается доля отвержений нулевой гипотезы среди всех проверок. То есть, если эксперимент повторялся k раз для каждого набора значений параметра, и в m из k случаев гипотеза была отвергнута на некотором фиксированном уровне значимости \alpha (примем \alpha=0.05), оценкой мощности будет отношение m/k.

Необходимо сдать: выполненный в LaTex или Microsoft Word отчёт с описанием алгоритма, построенными графиками и выводами (объяснение полученных результатов моделирования, границы применимости критерия и т.д.), а также *.m-файл, при запуске которого на экран выводятся графики, соответствующие имеющимся в отчёте (допускается, хотя и не рекомендуется использование среды R).

Пример задания

Исследуем поведение классического двухвыборочного критерия Стьюдента для проверки гипотезы однородности против альтернативы сдвига при разных значениях параметров.

x^n = (x_1,\ldots,x_n)\sim N(\mu_1,\sigma),\;\; y^n = (y_1,\ldots,y_n)\sim N(\mu_2,\sigma);

H_0\,:\; \mu_1=\mu_2,

H_1\,:\; \mu_1\neq\mu_2.

\sigma = 1; \;\;\; \mu_1=0; \;\;\; \mu_2=0\,:\,0.05\,:\,3; \;\;\;  n=5\,:\,1\,:\,50.

При каждом значении \mu_2 выборки для разных значений n генерируются независимо.

Задания

Анализ устойчивости критериев к нарушению предположений

  • Исследовать устойчивость одновыборочного критерия Стьюдента к нарушению предположения о нормальности данных. x^n — смесь распределений N(\mu,1) и U[-a+\mu,a+\mu] с весами p и 1-p соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит p, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного). Для разных значений параметров выборки генерируются независимо.
    H_0\,:\; \mu=0, \;\; H_1\,:\; \mu\neq 0;
    p=0\,:\,0.02\,:\,1; \;\;  \mu=-1\,:\,0.05\,:\,1; \;\; n=100.
    Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к зашумлению выборки.
Вишневский Валерий: a=1.
Гарсиа Анхела: a=5.
Дергунов Вадим: a=10.
  • Исследовать устойчивость двухвыборочного критерия Стьюдента для независимых выборок к нарушению предположения о нормальности данных. x^n \sim N(\mu_1,1), y^n — смесь распределений N(\mu_2,1) и U[-a+\mu_2,a+\mu_2] с весами p и 1-p соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит p, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного). Для разных значений параметров выборки генерируются независимо.
    H_0\,:\; \mu_1=\mu_2, \;\; H_1\,:\; \mu_1\neq\mu_2;
    \mu_1=0; \;\; p=0\,:\,0.02\,:\,1; \;\;  \mu_2=-1\,:\,0.05\,:\,1; \;\; n=100.
    Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к зашумлению одной из выборок.
Добров Григорий: a=1.
Дячкин Олег: a=5.
Ерошенко Александр: a=10.

Анализ чувствительности критериев к редактированию выборки

  • Известно, что исключение из выборки определённых наблюдений зачастую может достаточно сильно повлиять на результат анализа. Необходимо исследовать чувствительность одновыборочного критерия критерия Стьюдента к редактированию выборки.
    x^n \sim N(\mu,\sigma);
    H_0\,:\; \mu=0, \;\;\; H_1\,:\; \mu>0.
    При каждом значении параметра \mu генерируется выборка размера n, проводится проверка гипотезы H_0, затем по некоторому правилу из выборки исключается один из элементов, проверка гипотезы повторяется, затем исключается ещё один, и т.д. Обозначим за K максимальное число исключённых в таком процессе элементов. Построить графики вида 1, 2, 3, сделать выводы о чувствительности критерия к редактированию выборки.
Когадеева Мария: n=100;\;\;K=50;\;\;\sigma=1;\;\;\mu=-1\,:\,0.01\,:\,1;\;\; на каждом шаге исключается максимальный элемент.
Колесниченко Алексей: n=200;\;\;K=100;\;\;\sigma=5;\;\;\mu=-2\,:\,0.02\,:\,2;\;\; на каждом шаге исключается максимальный элемент.
Кошманова Наталья: n=100;\;\;K=50;\;\;\sigma=2;\;\;\mu=-2\,:\,0.02\,:\,2;\;\; на каждом шаге исключается минимальный элемент.
Лаптев Дмитрий: n=200;\;\;K=100;\;\;\sigma=5;\;\;\mu=-3\,:\,0.03\,:\,3;\;\; на каждом шаге исключается минимальный элемент.

Анализ поведения схожих критериев

Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики вида 1, 2, 3, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий.

  • x^n \sim N(0,1),\;\;y^n \sim N(\mu,1);
    H_0\,:\; \mu=0, \;\;\; H_1\,:\; \mu\neq 0;
    \mu=-2\,:\,0.02\,:\,2;\;\; n=10\,:\,5\,:\,100.
Логачев Юрий: двухвыборочный критерий Стьюдента для независимых выборок и критерий Уилкоксона-Манна-Уитни.
Полежаева Елена: двухвыборочный критерий Стьюдента для связных выборок и критерий Уилкоксона для связных выборок.
Прокашева Ольга: двухвыборочные критерий Стьюдента для связных и независимых выборок.
Пятков Евгений: критерий Уилкоксона-Манна-Уитни и медианный критерий.
Сизов Алексей: критерий Уилкоксона для связных выборок и критерий знаков.
Кожахметова Жанна: критерий знаков и медианный критерий.


  • x^n \sim Be(p_1),\;\;y^n \sim Be(p_2);
    H_0\,:\; p_1=p_2, \;\;\; H_1\,:\; p_1\neq p_2;
Слепнева Екатерина: критерий хи-квадрат и точный критерий Фишера. p_1=0\,:\,0.02\,:\,1; \;\; p_2=0\,:\,0.02\,:\,1; \;\;n=50.
Тишин Кирилл: критерий хи-квадрат и точный критерий Фишера. p_1=0.5; \;\; p_2=0\,:\,0.05\,:\,1; \;\;n=10\,:\,2\,:\,50.
  • x^n  — смесь распределений N(0,1) и U[-a,a] с весами p и 1-p соответственно (при генерации выборки используется случайный датчик — если его значение не превосходит p, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного).
     H_0\,:\; x \sim N(0,1), \;\;\; H_1\,:\; H_0 неверна;
    p=0\,:\,0.02\,:\,1; \;\; n=10\,:\,5\,:\,100.
Чернышов Виктор: критерий Шапиро-Уилка и критерий Колмогорова-Смирнова. a=1.
Чиркова Алла: критерий омега-квадрат и критерий Шапиро-Уилка. a=2.
Шевцова Алена: критерий хи-квадрат и критерий омега-квадрат. a=5.
Щичко Антон: критерий Колмогорова-Смирнова и критерий хи-квадрат. a=7.

Ссылки

Личные инструменты