Сравнение временных рядов при авторегрессионном прогнозе (пример)
Материал из MachineLearning.
Содержание |
Аннотация
Временным рядом называется последовательность упорядоченных по времени значений некоторой вещественной переменной . Элемент последовательности называется отсчетом временного ряда.
Задача авторегрессионного прогноза заключается в нахождении модели , где вектор параметров модели, которая наилучшим образом приближает следущее значение временного ряда . Свертка временного ряда возникает в случае существования на множестве подпоследовательностей временного ряда некоторого инварианта. Примером инварианта является период временного ряда, который физически может означать сезонность в данных. При этом построенная модель должна учитывать наличие инварианта и сохранять данное свойство для ряда прогнозов: .
Постановка задачи
Пусть задан временной ряд . Предполагается, что отсчеты были сделаны через равные промежутки времени, и период временного ряда равен , при этом , где . Задана модель ,где случайная величина имеет нормальное распределение . Вектор параметров модели рассматривается как многомерная случайная величина. Пусть плотность распределения параметров имеет вид многомерного нормального распределения с матрицей ковариации . Модель некоторым образом учитывает период временного ряда. Предполагается, модель временного ряда может меняться с течением времени, т.е. для разных подпоследовательностей длины оптимальные параметры модели будут отличаться.
Расстояние между временными рядами
Расстояние между различными подпоследовательностями и можно вычислить как сумму квадратов отклонений:
Однако этот метод учитывает только расстояния между парами отсчетов временного ряда. Метод поиска пути минимальной стоимости (warping path) учитывает не только расстояние между отсчетами рядов, но и форму самих временных рядов.
Предположим, мы имеем две последовательности и . Тогда построим матрицу попарных расстояний:
Далее из элементов матрицы строим путь:
Построенный путь удовлетворяет следующим условиям:
'1 граничные условия:'Стоимостью пути будет
Среди всех путей есть по крайней мере один с минимальной стоимостью. Его стоимость и будем считать расстоянием между последовательностями:
Расстояние между параметрами модели
Расстояние между параметрами модели , настроенной на разных подпоследовательностях, можно измерить как расстояние Кульбака-Лейблера между функциями распределения 2-ух случайных величин :
Постановка задачи
Требуется исследовать зависимость расстояния между параметрами модели от расстояния между подпоследовательностями, на которых эти параметры были настроены.
Алгоритм
Для настройки параметров модели используется связный байесовский вывод
где — функция ошибки,
— матрица Гессе функции ошибок,
— функция ошибки в пространстве данных.
Настройка параметрической регрессионной модели происходит в 2 этапа, сначала настраиваются параметры при фиксированных гиперпараметрах , затем при вычисленных значениях параметров функция правдоподобия оптимизируется по гиперпараметрам. Процедура повторяется, пока настраиваемые параметры не стабилизируется.
Для простоты вычислений, считаем, что имеет диагональный вид:
.
Вычислительный эксперимент
Вычислительный эксперимент проводился на реальных данных. Использовались временные ряды потребления электроэнергии в некотором регионе с отсчетами 1 час, период ряда равен .
Эксперимент состоит из этапов:
1) из множества порождающих моделей:
была построена их суперпозиция, описывающая потребление электроэнергии за сутки:
2) модель настраивается на подпоследовательности
,
где - номер суток. В результате получаем набор оптимальных параметров и гиперпараметров модели, оптимальных для данной подпоследовательности:
3) строится зависимость расстояния между последовательностями в пространстве параметров:
и расстояний в пространстве значений:
Результаты экспериментов на реальных данных опровергают утверждение о зависимости расстояния между временными рядами в пространстве значений от расстояния между распределениями параметров соответствующей им модели.
Исходный код
Смотри также
Литература
- Стрижов В.В, Пташко Г.О. Построение инвариантов на множестве временных рядов путем динамической свертки свободной переменной. — ВЦ РАН, 2009.
- Стрижов В.В Методы выбора регрессионных моделей. — ВЦ РАН, 2010.