Оценка параметров смеси моделей
Материал из MachineLearning.
|
Введение
В случае, когда одной модели для описания данных не хватает, используют смеси моделей. Предполагается, что исходная зависимость выражается формулой:
где --- вероятность принадлежности модели .
Далее предполагается, что объекты в выборке независимы и плотность совместного распределения преобразуется в произведение плотностей распределения каждого объекта.
Введем функцию правдоподобия как логарифм плотности вероятности данных.
Обозначим через вероятность того, что объект был порожден компонентой , --- вероятность того, что -объект порожден -компонентой. Каждый объект был порожден какой-либо моделью, по формуле полной вероятности
Для произвольного объекта вероятность его получения моделью по формуле условной вероятности равна:
Подставим это равенство в формулу Байеса для
Для определения параметров смеси необходимо решить задачу максимизации правдоподобия $Q(\vec{w}^1, \dots, \vec{w}^l, \vec{\pi}) \rightarrow max$, для этого выпишем функцию Лагранжа:
Оценка параметров линейных моделей
Оценка параметров обобщенно-линейных моделей
Оценка параметров смеси экспертов
Литература
- Bishop, C. Pattern Recognition And Machine Learning. Springer. 2006., p 654 - 676
- Nelder, John; Wedderburn, Robert (1972). "Generalized Linear Models". Journal of the Royal Statistical Society. Series A (General) (Blackwell Publishing)
- Воронцов~К.~В. "Курс лекций по машинному обучению". стр. 32 - 37
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |