Мультиномиальное распределение зависимых случайных величин
Материал из MachineLearning.
Мультиномиальное) распределение зависимых случайных величин — это обобщение биномиального распределения двух случайных величин на случай зависимых испытаний случайного эксперимента с несколькими возможными исходами (таблица 1).
Пространство элементарных событий | |
Вероятность |
|
Максимальная вероятность
(при математическом ожидании распределения) |
|
Математическое ожидание
(как максимальное произведение математических ожиданий случайных величин) |
|
Дисперсия | |
Максимальная дисперсия
(при математическом ожидании распределения) |
|
Ковариационная матрица | ,
где |
Корреляционная матрица | ,
где |
- критерий |
|
Схема повторных циклов случайных зависимых экспериментов
Мультиномиальное распределение появляется в так называемой полиномиальной схеме повторных циклов случайных зависимых экспериментов. Каждый цикл экспериментов осуществляют методом выбора без возвращения в дискретной временной последовательности , номера точек которой соответствуют номерам случайных величин.
Каждая из случайных величин распределения — это число наступлений одного соответствующего события
в - ый момент времени при условии, что в - ый момент произошло наступлений предшествующего события с положительным исходом, все вероятности которых нормированы и неизменны во время проведения экспериментов.
Если в каждом цикле экспериментов вероятность наступления события равна , то полиномиальная вероятность равна вероятности того, что при экспериментах события наступят раз соответственно.
Случайная величина мультиномиального распределения в соответствующей точке дискретной временной последовательности имеет:
пространство элементарных событий
вероятность
математическое ожидание
и дисперсию
Пространство элементарных событий мультиномиального распределения есть сумма точечных пространств элементарных событий его случайных величин, образующих дискретную последовательность точек цикла, а вероятность мультиномиального распределения — произведение вероятностей его случайных величин.
Технические задачи и технические результаты
Для получения мультиномиального распределения необходимо решить две технические задачи и получить технические результаты, относящиеся к математической
физике [1,2].
Первая и вторая технические задачи — соответственно получение вероятности и математического ожидания мультиномиального распределения.
Технические результаты — набор технических параметров, с одной стороны, минимально необходимый для описания мультиномиального распределения и его случайных величин, с другой стороны, позволяющий при необходимости расширить число параметров с целью получения дополнительных сведений о распределении, например, таких как корреляционная матрица, ковариационная матрица , критерий и другие.
Минимально необходимый набор параметров при решении первой технической задачи: пространство элементарных событий,
вероятность, математическое ожидание и дисперсия каждой случайной величины распределения, дисперсия распределения и произведение математических ожиданий его случайных величин как исходное выражение для решения второй технической задачи.
При решении второй технической задачи минимально необходимый набор параметров аналогичен предыдущему набору. Исключен из-за ненадобности один параметр — произведение математических ожиданий случайных величин и дополнен двумя параметрами — максимальной вероятностью и максимальной дисперсией мультиномиального распределения.