Метод Бенджамини-Хохберга
Материал из MachineLearning.
Метод Бенджамини-Хохберга — один из методов контроля ожидаемой доли ложных отклонений гипотез (FDR) который утверждает, что при определенных ограничениях на статистики гипотез для достижения контроля FDR на уровне достаточно, чтобы отвергались гипотезы , для которых , где — количество гипотез.
Содержание |
Определение
Пусть — семейство гипотез, а — соответствующие им достигаемые уровни значимости. Обозначим за - число отвергнутых гипотез, а за - число неверно отвергнутых гипотез, т.е. число ошибок первого рода.
Ожидаемая доля ложных отклонений гипотез, или FDR, определяется следующим образом
Контроль над FDR на уровне означает, что
Метод Бенджамини-Хохберга
Это нисходящая процедура(по аналогии с методом Холма и методом Шидака-Холма) со следующими уровнями значимости
Пусть — уровни значимости , упорядоченные по неубыванию, — соответствующие гипотезы. Процедура метода Бенджамини-Хохберга определена следующим образом.
- Шаг 1. Если , принять гипотезы и остановиться. Иначе, если , отвергнуть гипотезу и продолжить проверку оставшихся гипотез на уровне значимости .
- Шаг 2. Если , принять гипотезы и остановиться. Иначе, если , отвергнуть гипотезу и продолжить проверку оставшихся гипотез на уровне значимости .
- И т.д.
Метод обеспечивает контроль над FDR на уровне при нижеследующих условиях.
Ограничения
Статистики независимы или выполняется следующее свойство (PRDS on ):
- не убывает по ,
где - множество индексов верных гипотез, - произвольное возрастающее множество, то есть, такое, что из и следует
Альтернативная постановка
Переходим к модифицированным достигаемым уровням значимости:
Пример
для проверки используем одновыборочный критерий Стьюдента.
С поправкой Холма(метод Холма):
Верных Неверных Всего Принятых 150 24 174 Отвергнутых 0 26 26 Всего 150 50 200
С методом Бенджамини-Хохберга:
Верных Неверных Всего Принятых 148 4 152 Отвергнутых 2 46 48 Всего 150 50 200
Реализации
- MATLAB: Benjamini and Hochberg/Yekutieli Procedure for Controlling False Discovery Rate - реализация на MathWorks.com
- R: функция
p.adjust
(с параметромmethod="BH"
) из стандартного пакетаstats
позволяет получить модифицированные уровни значимости с учетом поправки метода Бенджамини-Хохберга.
Ссылки
- Benjamini, Yoav; Hochberg, Yosef (1995). "Controlling the false discovery rate: a practical and powerful approach to multiple testing". Journal of the Royal Statistical Society, Series B 57 (1): 289–300. MR 1325392.
- Hochberg, Y.; Benjamini, Y. (1990). "More powerful procedures for multiple significance testing". Statistics in Medicine 9 (7): 811–818. doi. PMID 2218183.