Участник:Василий Ломакин/Критерий Уилкоксона двухвыборочный

Материал из MachineLearning.

Перейти к: навигация, поиск

Критерий Уилкоксона двухвыборочныйнепараметрический статистический критерий, используемый для проверки гипотезы о равенстве средних двух независимых выборок. Выборки взяты из закона распределения, отличного от нормального, либо данные измерены с использованием нечисловой шкалы. Метод следует использовать, когда нет информации о дисперсии выборок. В случае равных дисперсий следует применять более мощный U-критерий Манна-Уитни. Имеется аналог критерия Уилкоксона для связанных повторных наблюдений.

Содержание

Пример задачи

Описание критерия

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\;\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R};\; m \le n, в противном случае следует поменять выборки местами.

Дополнительные предположения:

Нулевая гипотеза H_0:\; обе выборки имеют одинаковое распеределение, то есть извлечены из одной генеральной совокупности. Следствием этого является равенство средних.

Статистика критерия:

  1. Построить общий вариационный ряд объединённой выборки x^{(1)} \leq \cdots \leq x^{(m+n)} и найти ранги r(x_i),\; r(y_i) всех элементов обеих выборок в общем вариационном ряду.
  2. Рассчитать суммы рангов, соответствующих обеим выборкам:
R_x = \sum_{i=1}^m r(x_i);
R_y = \sum_{i=1}^n r(y_i);
  1. Если размеры выборок совпадают (m=n), то значение статистики W будет равняется одной из сумм рангов R_x или R_y (любой).

Критерий (при уровне значимости \alpha):

  • против альтернативы H_1:\; ????
если W \notin \left[ W_{\alpha/2},\,W_{1-\alpha/2} \right] , то нулевая гипотеза отвергается. Здесь W_{\alpha} есть \alpha-квантиль табличного распределения Уилкоксона с параметрами m,\,n.

Асимптотический критерий:

Рассмотрим нормированную и центрированную статистика Уилкоксона:

T = \frac{R - \frac{N(N+1)}{4}}{\sqrt{\frac{N(N+1)(2N+1)}{24}}};

T асимптотически имеет стандартное нормальное распределение при N \ge 20.

При наличии связок необходимо учесть их с помощью поправки. Выражение под корнем в знаменателе необходимо заменить на следующее:

\frac{N(N+1)(2N+1) - \frac{\sum_{j=1}^{g}{t_j(t_j-1)(t_j+1)}}{2}}{24},
где g - количество связок, t_1, \ldots, t_g - их размеры.


Свойства и границы применимости критерия

История

Литература

  1. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003. — 204-209 с.
  2. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002. — 160-164 с.

Ссылки

Личные инструменты