Однофакторная непараметрическая модель
Материал из MachineLearning.
|
Однофакторная модель в рамках дисперсионного анализа используется для исследования влияния одной переменной (фактора) на одну зависимую количественную переменную (отклик).
Данные состоят из нескольких рядов наблюдений (обработок), которые рассматриваются как реализации независимых между собой выборок. Исходная гипотеза говорит об отсутствии различия в обработках, т.е. предполагается, что все наблюдения можно считать одной выборкой из общей совокупности.
В отличие от однофакторной параметрической модели для непараметрических методов не делается никаких предположений о нормальности выборок. Это существенно расширяет круг рассматриваемых задач.
Критерий Краскела-Уоллиса
В качестве непараметрического теста для выявления наличия статистически значимых различий между средними нескольких выборок используется критерий Краскела-Уоллиса. Он используется для сравнения трех или более выборок, и проверяет нулевые гипотезы, согласно которым различные выборки были взяты из одного и того же распределения, или из распределений с одинаковыми медианами. Таким образом, интерпретация критерия Краскела-Уоллиса сходна с параметрическим одномерным дисперсионным анализом, за исключением того, что этот критерий основан на рангах, а на средних.
Пусть заданы k выборок: . Объединённая выборка: .
Дополнительные предположения
- обе выборки простые, объединённая выборка независима;
- выборки взяты из неизвестных непрерывных распределений .
Нулевая гипотеза
при альтернативе .
Примеры задач
Пример 1: Проходит чемпионат мира по футболу. Первая выборка — опрос болельщиков с вопросом "Каковы шансы на победу сборной России?" до начала чемпионата. Вторая выборка — после первой игры, третья —- после второго матча и т.д. Значения в выборках — шансы России на победу по десятибальной шкале (1 — никаких перспектив, 10 — отвезти в Россию кубок — дело времени). Требуется проверить, зависят ли результаты опросов от хода чемпионата.
Пример 2: Есть 3 различных магазина, принадлежащих одной фирме и расположенных в разных точках города, и подневная история объемов продаж в этих магазинах. Необходимо выяснить, есть ли различие в количестве покупок, совершаемых ежедневно в этих магазинах.
Критерий Джонкхиера
Критерий Джонкхиера основан на попарных статистиках Уилкоксона-Манна-Уитни и используется для проверки гипотезы сдвига против альтернатив упорядоченности.
Нулевая гипотеза
Примеры задач
Пример 1: Имеется гипотеза, что по мере перехода на старшие курсы падает посещаемость лекций. Для выяснения, верно ли это предположение, декан организовал выборочный контроль студентов. Случайным образом были отобраны по пять студентов с каждого курса и организован учёт числа посещённых ими лекций из 30, отобранных случайно на каждом курсе.
Пример 2: Утки-пеганки изучались в 20-ти ареалах обитания в устье реки Северн, Великобритания. Целью исследования было выяснить, зависит ли "чистота" окраса (его равномерность и выраженность границ) от того района, где питались птицы. "Чистота" была измерена от 1-го до 8-и, то есть от худшего до лучшего, качество всех районов было ранжировано как "плохой", "средний" и "хороший".
Литература
- Шеффе Г. Дисперсионный анализ. — М., 1980.
- Аренс Х. Лёйтер Ю. Многомерный дисперсионный анализ.
- Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
- Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Холлендер М., Вульф Д.А. Непараметрические методы статистики.
Ссылки
- Дисперсионный анализ для связанных выборок - Аналитическая статистика.
- Дисперсионный анализ.
- Непараметрические критерии для оценки однородности выборок
- Jonckheere-Terpstra Test.
См. также
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |