Глубинное обучение (курс лекций)/2016

Материал из MachineLearning.

Перейти к: навигация, поиск


Описание

Преподаватели: Д.А. Кропотов, В.В. Китов, Д.П. Ветров, Е.М. Лобачёва, А. В. Артёмов, А. Ашуха, А. Панин.

По всем вопросам, связанным с курсом, просьба писать на bayesml@gmail.com. В название письма обязательно добавлять [ВМК ГО16].

В осеннем семестре 2016 года занятия по курсу проходят на ВМК в ауд. 582 с 10-30 до 13-50.

Система выставления оценок по курсу

В рамках курса предполагается три практических заданий и экзамен. Каждое задание оценивается из 5-ти баллов. За просрочку при сдаче задания начисляется штраф из расчёта 0.1 балла в день, но суммарно не более 3-х баллов. В итоговой оценке 70% составляют баллы за практические задания и 30% — оценка за экзамен. Для получения финального результата (0, 3, 4, 5) итоговая оценка по курсу округляется в большую сторону. Для получения итоговой оценки 3 необходимо выполнить не менее одного практического задания, для оценки 4 – не менее двух практических заданий, для оценки 5 – три практических задания.

Экзамен

Экзамен по курсу состоится 16 января в ауд. 523, начало в 12-00. На экзамене при подготовке билета разрешается пользоваться любыми материалами. При непосредственном ответе ничем пользоваться нельзя. Просьба обратить внимание на теоретический минимум. Незнание ответов на вопросы из теор. минимума влечёт неудовлетворительную оценку за экзамен.

Вопросы к экзамену


Расписание

Дата № занятия Занятие Материалы
2 сентября 2016 1 Введение в курс. Стохастическая оптимизация. Презентация
9 сентября 2016 2 Сети прямого распространения. Автоматическое дифференцирование.
16 сентября 2016 3 Сверточные нейронные сети. Презентация
23 сентября 2016 4 Регуляризация нейронных сетей. Презентация
30 сентября 2016 5 Нейронные сети для компьютерного зрения. Локализация, детектирование и распознавание объектов. Презентация
7 октября 2016 6 Визуализация слоев. Neural Style. Презентация
Предобработка текстов. Презентация
14 октября 2016 7 Рекуррентные нейронные сети. Проблема затухающих и взрывающихся градиентов. Презентация
21 октября 2016 8 Примеры применения рекуррентных нейронных сетей. Регуляризация.
28 октября 2016 9 Автокодировщики. Презентация
11 ноября 2016 10 Байесовский подход к теории вероятностей. Модели со скрытыми переменными. Конспект по ЕМ-алгоритму
18 ноября 2016 11 Вариационный автокодировщик. Стохастический граф вычислений. Конспект по вероятностному методу главных компонент Статья
25 ноября 2016 12 Генерация текста по картинке. Презентация
2 декабря 2016 13 Обучение с подкреплением. Примеры задач. Презентация
9 декабря 2016 14 Использование нейросетей в обучении с подкреплением. Презентация

Литература

  1. Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning, MIT Press, 2016.
Личные инструменты