Математические методы прогнозирования (практика, В.В. Стрижов)/Группа 574, осень 2019
Материал из MachineLearning.
Short link bit.ly/IS_B2
This series of seminars continues the course Bayesian model selection and investigates the theoretical aspects of model selection in various application problems.
Videolectures are available here.
Seminar 1 (Isachenko, slides)
- Generative models
- Applications
- Autoregressive models (CharRNN, MADE, WaveNet, PixelCNN)
Seminar 2 (Isachenko, slides)
- Generative vs discriminative
- Latent variable models
- Variational Inference
- ELBO
- Variational Autoencoder
Seminar 3 (Isachenko, slides)
- Mean field approximation
- Flow models (NICE, RealNVP)
Seminar 4 (Isachenko, slides)
- VAE Limitations
- Flows in VAE
- Autoregressive flows (MAF, IAF, Parallel WaveNet)
Seminar 5 (Isachenko, slides)
- IWAE (lower bound, posterior, inactive units)
- ELBO surgery
- VampPrior
Seminar 6 (Isachenko, slides)
- Autoregressive decoder in VAE
- Posterior collapse, decoder weakening
- Disentangled representations
- beta-VAE
Seminar 7 (Bakhteev, slides)
- Model selection statement
- ELBO for model selection
- Early Stopping is Nonparametric Variational Inference
- Langevin dynamics
Seminar 8 (Bakhteev, slides)
- Hyperparameter optimization
- Bi-level optimization
- RMD
- Gradient optimization
Seminar 9 (Grabovoy, slides)
- Mixture of Models
- Mixture of Experts
- Priors on the local Models
Seminar 10 (Isachenko, slides)
- Reversible Residual Networks
- Glow
- Neural ODE
Seminar 11 (Bakhteev, slides)
- Meta-optimization
- Pruning
- Structure sampling
Seminar 12 (Bakhteev, slides)
- ARD
- AdaNet
- NAS
- Gumbel-Softmax
- Variational inference with structure generation
Группа
5 курс
Студент | Тест 1 | Тест 2 | Тест 3 | Тест 4 | Тест 5 | HW 1 | HW 2 |
---|---|---|---|---|---|---|---|
Васильев Илья | - | - | 0.59 | - | - | - | |
Гадаев Тамаз Тазикоевич | 0.56 | 0.94 | 0.75 | - | 0.88 | - | |
Гладин Егор Леонидович | - | - | - | - | - | - | |
Грабовой Андрей Валериевич | 0.63 | 0.31 | 0.67 | 0 | - | Essay | |
Кислинский Вадим Геннадьевич | - | - | - | - | - | - | |
Козлинский Евгений Михайлович | - | - | - | - | - | - | |
Криницкий Константин Денисович | - | 0.25 | - | - | - | essay | |
Кириллов Егор Дмитриевич | - | - | - | - | - | - | |
Рогозина Анна Андреевна | - | - | - | - | - | - | |
Плетнев Никита Вячеславович | 0.82 | 0.25 | 0.67 | - | 0.63 | Essay | |
Малиновский Григорий Станиславович | 0.82 | 0.81 | 0.84 | 1 | 0.63 | [1] | |
Самохина Алина Максимовна | - | - | 0.25 | 1 | 0.75 | - | |
Султанов Азат Русланович | - | - | - | - | - | - | |
Федосов Павел Андреевич | - | - | - | - | - | - | |
Шульгин Егор Владимирович | - | - | 0.34 | - | - | 0.13 |
6 курс
Студент | HW 1 | HW 2 |
---|---|---|
Сайранов Данил | - | |
Александра Гальцева | - | |
Фельдман Даниил | - | |
Никитин Филипп | - | |
Фалахов И | - | |
Собраков | - |
- Topics
- Generative adversarial networks
- Methods of model selection
- Generalization theorem
- Complexity theorems
- Mixture of experts
- Priors on the mixture
- Privileged learning and distilling
- Theorem of number of experts
- Prior propagation for deep learning networks
- Directional Bayesian statistics
- Bayesian structure learning
- Probabilistic metric space construction
- Informative prior
- Bayesian programming
- Informative prior with applications