Нейросетевые методы обработки изображений (В.В.Китов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Экзамен)
 
(30 промежуточных версий не показаны.)
Строка 3: Строка 3:
==О курсе==
==О курсе==
-
Спецкурс проходит на ф-те ВМиК в весеннем семестре и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо преобразовать так, чтобы сохранить изображенные на нем предметы, но стилистику их отображения взять из другого изображения или группы изображений. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо изменение зимней панорамы в летнюю. Эта задача может применяться в мультипликации, наложении спецэффектов в фильмах и видеоиграх, симуляторах и средствах дополненной реальности, а также для более точной настройки методов машинного обучения работе с изображениями за счет расширения обучающей выборки путем вариации стиля и адаптации стиля под целевую предметную область. Помимо отдельных изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и т.д.). Основные методы стилизации были предложены в последние 5 лет и опираются на глубинные нейронные сети, базовому изучению которых посвящена существенная часть курса.
+
Спецкурс проходит на ф-те ВМиК в весеннем семестре и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо отобразить в стиле, задаваемым другим изображением. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо преобразование фотогрфии в схематичную книжную иллюстрацию. Для решения задачи существуют современные подходы переноса стиля (style transfer) и генеративно-состязательные сети (generative adversarial networks). Эта задача широко используется в индустрии разлечений (например, мобильное приложение Prisma было самым скачиваемым на Android в странах СНГ в течение 10 дней после выхода), при обработке фотографий и дизайне (функции стилизации были добавлены в Adobe Photoshop 2021), может применяться в мультипликации, наложении спецэффектов в фильмах, видеоиграх и средствах дополненной реальности, а также для более точной настройки методов машинного при обучении на одной предметной области, а применении модели к другой (transfer learning). Помимо изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и музыка). Основные методы стилизации были предложены в последние 7 лет и опираются на глубокие нейронные сети, базовому изучению которых посвящена начальная часть курса.
-
==Лектор==
+
Занятия проходят в формате лекций. В процессе прохождения курса каждый студент должен сделать презентацию основных идей и подходов одной из недавних статей, посвященных стилизации изображений, а также представить свои идеи улучшений традиционных методов стилизации изображений и их обосновать.
-
[[Участник:Victor Kitov|Виктор Владимирович Китов]], к.ф.-м.н., преподаватель кафедры [[Mmp|математических методов прогнозирования]] [http://cmc.msu.ru ВМК МГУ]. Почта: v.v.kitov(at)yandex.ru.
+
-
==Расписание==
+
==Экзамен==
-
Занятия проходят удалённо по вторникам (18-30 - 20-00) и по пятницам (19-00 - 20-30) через zoom по [https://zoom.us/j/8043842932?pwd=SUlMOFNRRDRXOG5kcm9pamZMWXdBdz09 ссылке] в следующие дни:
+
[https://disk.yandex.ru/i/isoVOoVDo2DObw список билетов].
-
26 фев (пт), 5 мар (пт), 9 мар (вт), 12 мар (пт), 16 мар (вт), 19 мар (пт), 23 мар (вт), 26 мар (пт), 30 мар (вт), 02 апр (пт), 06 апр (вт), 16 апр (пт), 23 апр (пт).
+
-
==Лекции==
+
==Лектор==
 +
[[Участник:Victor Kitov|Виктор Владимирович Китов]], к.ф.-м.н., преподаватель кафедры [[Mmp|математических методов прогнозирования]] [http://cmc.msu.ru ВМК МГУ].
-
[https://disk.yandex.ru/d/4OpIzpEIDAtIxg?w=1 Все материалы лекций, включая рукописные записи]
+
Телеграм: VictorKitov
-
---
+
Почта: v.v.kitov(at)yandex.ru.
-
[https://disk.yandex.ru/i/DahA9a6xJACndA Введение в машинное обучение.]
+
==Время занятий==
 +
По вторникам 16-20 - 17-55, ауд. 609.
 +
Первое занятие будет 14.02.2023.
-
[https://disk.yandex.ru/i/yLIS882WZvWuJA Градиентный спуск]
+
==Лекции==
-
 
+
-
[https://disk.yandex.ru/i/i_BnuYAjWChnQg Расширение выборки изображений.]
+
-
[https://disk.yandex.ru/i/gph7FwVAtNQ9Dw Сверточные нейросети.]
+
[https://disk.yandex.ru/i/L3-gyBerNhNH5g Задачи глубокого обучения.]
-
[https://disk.yandex.ru/i/cpmM9us878oT7g Основные архитектуры сверточных нейросетей (классификация).]
+
[https://disk.yandex.ru/i/X92ZQYaDmJdMSA Нейросети. Многослойный персептрон.]
-
[https://disk.yandex.ru/i/vDkARFFSAE2Dhw Семантическая сегментация.]
+
[https://disk.yandex.ru/i/yzx2n6_GAeknVA Оптимизация нейросетей.]
-
[https://disk.yandex.ru/i/RFZmN0Y14q4nqA Оптимизационный метод переноса стиля.]
+
[https://disk.yandex.ru/i/1Myn1D-_A-nxRg Сверточные нейросети.]
-
[https://disk.yandex.ru/i/wvcSzT2NEay_zQ Трансформационный метод переноса стиля.]
+
[https://disk.yandex.ru/i/lZEK0TYOIg2Dhw Оптимизационный метод переноса стиля.]
-
[https://disk.yandex.ru/i/1GM8VR-hyxgsMw Мульти-стилевые трансформационные модели.]
+
[https://disk.yandex.ru/i/lLfe3zOC0IX28Q Трансформационный метод переноса стиля.]
-
[https://disk.yandex.ru/i/lT4wdWb7Pu47Aw Перенос стиля, основанный на патчах.]
+
[https://disk.yandex.ru/i/9jzeENMDEA3-eA Патчевый метод переноса стиля.]
-
[https://disk.yandex.ru/i/A31uPFZJtw3ZoA Генеративно-состязательные сети.]
+
[https://disk.yandex.ru/i/4RMfxk1Lg5eC9Q Технические улучшения методов стилизации изображений.]
-
[https://disk.yandex.ru/i/XC-1YMWi2gE9fg Приложения генеративно-состязательных сетей.]
+
[https://disk.yandex.ru/i/GJQPwB02CJXoaA Концептуальные улучшения методов стилизации изображений.]
-
[https://disk.yandex.ru/i/ZURITznAGYBSSA Технические улучшения стилизации.]
+
[https://disk.yandex.ru/i/f7D9e7dX-iOfjA Мульти-стилевые трансформационные модели.]
-
[https://disk.yandex.ru/i/cr8W3R3MguemNw Концептуальные улучшения стилизации.]
+
[https://disk.yandex.ru/i/G2nm-lSOWWRIgw Сингулярное разложение.]
-
[https://disk.yandex.ru/i/pav8WPuuxyfqyA Расширение обучающей выборки.]
+
[https://disk.yandex.ru/i/ng48clrTsdE_6w Семантическая сегментация.]
-
[https://disk.yandex.ru/i/N1TWXuRkctQgzQ Стилизация видео.]
+
[https://disk.yandex.ru/i/gN5hPPNT8V8EdQ Детекция объектов и instance-сегментация.]
=Рекомендуемые ресурсы=
=Рекомендуемые ресурсы=

Текущая версия


О курсе

Спецкурс проходит на ф-те ВМиК в весеннем семестре и посвящен задаче автоматической стилизации изображений, в которой входное изображение необходимо отобразить в стиле, задаваемым другим изображением. Например, это может быть стилизация семейной фотографии под стиль известного художника, либо стилизация дневного фото в ночное, либо преобразование фотогрфии в схематичную книжную иллюстрацию. Для решения задачи существуют современные подходы переноса стиля (style transfer) и генеративно-состязательные сети (generative adversarial networks). Эта задача широко используется в индустрии разлечений (например, мобильное приложение Prisma было самым скачиваемым на Android в странах СНГ в течение 10 дней после выхода), при обработке фотографий и дизайне (функции стилизации были добавлены в Adobe Photoshop 2021), может применяться в мультипликации, наложении спецэффектов в фильмах, видеоиграх и средствах дополненной реальности, а также для более точной настройки методов машинного при обучении на одной предметной области, а применении модели к другой (transfer learning). Помимо изображений указанный подход применим для видеопоследовательностей и данных из других предметных областей (текст, речь и музыка). Основные методы стилизации были предложены в последние 7 лет и опираются на глубокие нейронные сети, базовому изучению которых посвящена начальная часть курса.

Занятия проходят в формате лекций. В процессе прохождения курса каждый студент должен сделать презентацию основных идей и подходов одной из недавних статей, посвященных стилизации изображений, а также представить свои идеи улучшений традиционных методов стилизации изображений и их обосновать.

Экзамен

список билетов.

Лектор

Виктор Владимирович Китов, к.ф.-м.н., преподаватель кафедры математических методов прогнозирования ВМК МГУ.

Телеграм: VictorKitov

Почта: v.v.kitov(at)yandex.ru.

Время занятий

По вторникам 16-20 - 17-55, ауд. 609. Первое занятие будет 14.02.2023.

Лекции

Задачи глубокого обучения.

Нейросети. Многослойный персептрон.

Оптимизация нейросетей.

Сверточные нейросети.

Оптимизационный метод переноса стиля.

Трансформационный метод переноса стиля.

Патчевый метод переноса стиля.

Технические улучшения методов стилизации изображений.

Концептуальные улучшения методов стилизации изображений.

Мульти-стилевые трансформационные модели.

Сингулярное разложение.

Семантическая сегментация.

Детекция объектов и instance-сегментация.

Рекомендуемые ресурсы

Личные инструменты