Прикладная алгебра (курс лекций, С.И. Гуров)

Материал из MachineLearning.

Перейти к: навигация, поиск

Обзорный курс для студентов 3-го потока ВМК МГУ по основам алгебры (группы, кольца, поля) и её приложениям в кодировании и шифровании.

Лектор: Гуров Сергей Исаевич

Ассистенты: Кропотов Дмитрий, Варламова Арина, Добролюбова Ольга

Свои вопросы по курсу можно задавать в телеграм-чате.

В осеннем семестре 2020/2021 уч. г. занятия проходят в дистанционном режиме по понедельникам, начало в 12-50.

Видеозаписи отдельных занятий: ссылка


Экзамен

Консультации к экзамену состоятся 6 января в 14-00 и 10 января в 12-00. Зум-ссылка.

Все студенты, сдающие экзамен, заранее распределяются по конкретному дню/времени сдачи. Для участия в экзамене необходимо добавиться в курс на классруме. За час до запланированного времени сдачи студент через классрум получает номер экзаменационного вопроса, а также зум-ссылку. В течение этого часа студент самостоятельно пишет ответ на экзаменационный вопрос. При этом разрешается пользоваться любыми материалами. Далее в указанное время студент подключается по зум-ссылке и сдаёт устный экзамен экзаменатору. При ответе экзаменатору со стороны студента должна быть обеспечена возможность интерактивного написания формул. Здесь можно использовать графический планшет или установить мобильный телефон в качестве выносной веб-камеры, закрепить его над столом и далее писать ручкой на бумаге. Опрос по курсу начинается с вопросов теоретического минимума. На эти вопросы студент должен готов отвечать без подготовки. Неудовлетворительный ответ на вопросы теор.минимума влечёт неудовлетворительную оценку за экзамен.

Вопросы к экзамену

Теоретический минимум

Материалы

Конспект лекций

Программа курса

Группы, кольца, поля

  1. Группы
  2. Кольца и поля
  3. Векторные пространства, гомоморфизмы, сравнения

Конечные кольца и поля

  1. Поля Галуа
  2. Вычисления в конечных кольцах и полях
  3. Алгебра векторов над конечным полем
  4. Корни многочленов над конечным полем
  5. Циклические подпространства колец вычетов

Коды, исправляющие ошибки

  1. Блоковое кодирование: основные понятия
  2. Линейные коды
  3. Синдромное декодирование линейных кодов
  4. Циклические коды
  5. Коды БЧХ
  6. Декодирование кодов БЧХ

Алгебраические основы криптографии

  1. Основные понятия
  2. Система шифрования RSA
  3. Факторизация натуральных чисел
  4. Дискретное логарифмирование
  5. Криптосистемы МакЭлиса и Нидеррайтера

Начала эллиптической криптографии

  1. Эллиптические кривые: введение
  2. Основные понятия
  3. Эллиптические кривые в конечных полях
  4. Криптосистемы на эллиптических кривых

Литература

  1. Журавлёв Ю. И., Флёров Ю. А., Вялый М. Н. Дискретный анализ. Основы высшей алгебры. М.: МЗ Пресс, 2007.
  2. Лидл Р., Нидеррайтер Г. Конечные поля: В 2-х т. М.: Мир, 1988.
  3. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования. Методы, алгоритмы, применение. М.: Техносфера, 2006.
  4. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. М.: Мир, 1976.
  5. Токарева Н. Н. Симметричная криптография. Краткий курс: учебное пособие / Новосиб. гос. ун-т. Новосибирск, 2012.
  6. Применко Э. А. Алгебраические основы криптографии: Учебное пособие. - М.: Книжный дом «Либроком», 2014.

См. также

Страница кафедры математических методов прогнозирования ВМК МГУ

Курс «Прикладная алгебра» для студентов ММП

Личные инструменты