Участник:Kropotov
Материал из MachineLearning.
| Кропотов Дмитрий Александрович | 
Научные интересы
- Байесовские методы машинного обучения
 - Методы обучения и вывода в графических моделях
 - Методы оптимизации в машинном обучении
 - Практический интеллектуальный анализ данных
 
Избранные публикации
- Кропотов Д.А. Эффективный метод обучения L1-регуляризованной байесовской линейной регрессии, ИОИ-2012 link
 - D. Kropotov, D. Vetrov, L. Wolf, T. Hassner. Variational Relevance Vector Machine for Tabular Data // ACML 2010. link
 - A. Osokin, D. Vetrov, D. Kropotov. 3D Reconstruction of Mouse Brain from a Sequence of 2D Brain Slices in Application to Allen Brain Atlas // Lecture Notes in Bioinformatics, Vol. 6160, Springer, 2010, pp. 291-303. link
 - Ветров Д.П., Кропотов Д.А., Осокин А.А. Автоматическое определение количества компонент в ЕМ-алгоритме восстановления смеси нормальных распределений // ЖВМиМФ, т. 50, №4, 2010, с. 1-14. link
 - Ветров Д.П., Кропотов Д.А. Алгоритм множественного трекинга лабораторных животных // ММРО-2009. (PDF, 832 Кб)
 - D.Kropotov, D.Vetrov. General Solutions for Information-Based and Bayesian Approaches to Model Selection in Linear Regression and Their Equivalence // PRIA, Vol. 19, No. 3, 2009, pp. 447-455. link
 - E.Lomakina-Rumyantseva, P.Voronin, D.Kropotov, D.Vetrov, A.Konushin. Video Tracking and Behaviour Segmentation of Laboratory Rodents // PRIA, Vol. 19, No. 4, 2009, pp. 616-622. link
 - D. Kropotov, D. Vetrov. An Automatic Relevance Determination Procedure Based on Akaike Information Criterion for Linear Regression Problems // ICML Workshop on Sparse Optimization and Variable Selection, 2008. link
 - Kropotov D., Vetrov D. On One Method of Non-Diagonal Regularization in Sparse Bayesian Learning // ICML 2007. link
 - Васильев О.М., Ветров Д.П., Кропотов Д.А. Представление и обнаружение знаний в экспертных системах для задач распознавания образов // ЖВМиМФ, том 47, №8, 2007 link
 

