Машинное обучение (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Основные понятия и примеры прикладных задач)
(Многомерная линейная регрессия)
(117 промежуточных версий не показаны.)
Строка 12: Строка 12:
* сравнение и взаимосвязи с другими методами.
* сравнение и взаимосвязи с другими методами.
* примеры прикладных задач.
* примеры прикладных задач.
 +
 +
На семинарах разбираются дополнительные примеры, аспекты практического применения, работа с данными, программирование, проведение вычислительных экспериментов.
Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом '''ACM/IEEE Computing Curricula 2001''' по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).
Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом '''ACM/IEEE Computing Curricula 2001''' по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).
Строка 31: Строка 33:
=== Замечания для студентов ===
=== Замечания для студентов ===
-
* Осенью 2020 года курс читается в дистанционном режиме. [https://zoom.us/j/95829589904?pwd=eTVZdGpKUnN1Q0hSYlZ3cWpGMGh2UT09 Подключиться к конференции Zoom] {{Важно|Обновлено: 12-09-2020}}
+
* Весной 2022 года курс читается в дистанционном режиме.
 +
** [https://m1p.org/go_zoom Ссылка на Zoom для 3-го курса МФТИ] {{Важно|Обновлено: 2022-03-10}}
 +
** [https://us06web.zoom.us/j/81766985440?pwd=UWdrbk5OYVhFdm1Jczlsc0lpZTBkQT09 Ссылка на Zoom для 4-го курса МФТИ] {{Важно|Обновлено: 2022-02-04}}
* [https://github.com/andriygav/MachineLearningSeminars/blob/master/README.rst Ссылка на семинары для студентов МФТИ]
* [https://github.com/andriygav/MachineLearningSeminars/blob/master/README.rst Ссылка на семинары для студентов МФТИ]
* [https://ya-r.ru/2020/05/07/vorontsov-kurs-mashinnoe-obuchenie-2019-shkola-analiza-dannyh/ Видеолекции ШАД Яндекс]. {{Важно|Обновлено: 2019 год}}
* [https://ya-r.ru/2020/05/07/vorontsov-kurs-mashinnoe-obuchenie-2019-shkola-analiza-dannyh/ Видеолекции ШАД Яндекс]. {{Важно|Обновлено: 2019 год}}
Строка 38: Строка 42:
* О найденных ошибках и опечатках [[Служебная:EmailUser/Vokov|сообщайте мне]]. — ''[[Участник:Vokov|К.В.Воронцов]] 18:24, 19 января 2009 (MSK)''
* О найденных ошибках и опечатках [[Служебная:EmailUser/Vokov|сообщайте мне]]. — ''[[Участник:Vokov|К.В.Воронцов]] 18:24, 19 января 2009 (MSK)''
* Материал, который есть в pdf-тексте, но не рассказывался на лекциях, обычно не входит в программу экзамена.
* Материал, который есть в pdf-тексте, но не рассказывался на лекциях, обычно не входит в программу экзамена.
-
* Короткая ссылка на эту страницу: [https://bit.ly/1bCmE3Z https://bit.ly/1bCmE3Z].
+
* Короткая ссылка на эту страницу: [https://bit.ly/ML-Vorontsov bit.ly/ML-Vorontsov].
= Семестр 1. Математические основы машинного обучения =
= Семестр 1. Математические основы машинного обучения =
Строка 45: Строка 49:
== Основные понятия и примеры прикладных задач ==
== Основные понятия и примеры прикладных задач ==
-
Презентация: [[Media:Voron-ML-Intro-slides.pdf|(PDF, 1,4 МБ)]] {{важно|— обновление 05.09.2020}}.
+
Презентация: [[Media:Voron-ML-Intro-slides.pdf|(PDF, 1,7 МБ)]] {{важно|— обновление 13.09.2024}}.
-
Видеозапись: [https://youtu.be/xccjt6lOoow?list=PLk4h7dmY2eYHHTyfLyrl7HmP-H3mMAW08 Лекция] [https://youtu.be/bJVI5AIback?list=PLk4h7dmY2eYHHTyfLyrl7HmP-H3mMAW08 Семинар]
+
Видеозапись: [https://youtu.be/uLduOFhyCUw?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy&t=1437 Лекция] [https://youtu.be/bJVI5AIback Семинар]
* Постановка задач обучения по прецедентам. Объекты и признаки. Типы шкал: бинарные, номинальные, порядковые, количественные.
* Постановка задач обучения по прецедентам. Объекты и признаки. Типы шкал: бинарные, номинальные, порядковые, количественные.
* Типы задач: [[классификация]], [[регрессия]], [[прогнозирование]], [[ранжирование]].
* Типы задач: [[классификация]], [[регрессия]], [[прогнозирование]], [[ранжирование]].
Строка 52: Строка 56:
* Линейные модели регрессии и классификации. Метод наименьших квадратов. Полиномиальная регрессия.
* Линейные модели регрессии и классификации. Метод наименьших квадратов. Полиномиальная регрессия.
* Примеры прикладных задач.
* Примеры прикладных задач.
 +
* Задачи со сложно структурированными данными. Преобразование и генерация признаков.
* Методика экспериментального исследования и сравнения алгоритмов на модельных и реальных данных.
* Методика экспериментального исследования и сравнения алгоритмов на модельных и реальных данных.
* Конкурсы по анализу данных [http://kaggle.com kaggle.com]. [[Полигон алгоритмов классификации]].
* Конкурсы по анализу данных [http://kaggle.com kaggle.com]. [[Полигон алгоритмов классификации]].
Строка 57: Строка 62:
== Линейный классификатор и стохастический градиент ==
== Линейный классификатор и стохастический градиент ==
-
Презентация: [[Media:Voron-ML-Lin-SG.pdf|(PDF, 1,1 МБ)]] {{важно|— обновление 12.09.2020}}.
+
Презентация: [[Media:Voron-ML-Lin-SG.pdf|(PDF, 1,2 МБ)]] {{важно|— обновление 13.09.2024}}.
 +
Видеозапись: [https://youtu.be/YaJ-QfSHl3o?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy&t=37 Лекция] [https://youtu.be/-4pPz5kX4XQ Семинар]
* [[Линейный классификатор]], модель МакКаллока-Питтса, непрерывные аппроксимации пороговой функции потерь.
* [[Линейный классификатор]], модель МакКаллока-Питтса, непрерывные аппроксимации пороговой функции потерь.
 +
* Бинарная классификация и многоклассовая классификация.
* [[Метод стохастического градиента]] SG.
* [[Метод стохастического градиента]] SG.
-
* [[Метод стохастического среднего градиента]] SAG.
 
<!--
<!--
 +
* [[Метод стохастического среднего градиента]] SAG.
* Частные случаи: [[адаптивный линейный элемент]] ADALINE, [[перcептрон Розенблатта]], [[правило Хэбба]].
* Частные случаи: [[адаптивный линейный элемент]] ADALINE, [[перcептрон Розенблатта]], [[правило Хэбба]].
* [[Теорема Новикова]] о сходимости. Доказательство теоремы Новикова
* [[Теорема Новикова]] о сходимости. Доказательство теоремы Новикова
-->
-->
-
* Эвристики: инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов.
+
* Эвристики: инерция и ускоренный градиент, инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов.
* Проблема мультиколлинеарности и переобучения, регуляризация или [[редукция весов]] (weight decay).
* Проблема мультиколлинеарности и переобучения, регуляризация или [[редукция весов]] (weight decay).
* Вероятностная постановка задачи классификации. Принцип максимума правдоподобия.
* Вероятностная постановка задачи классификации. Принцип максимума правдоподобия.
* Вероятностная интерпретация регуляризации, совместное правдоподобие данных и модели. Принцип максимума апостериорной вероятности.
* Вероятностная интерпретация регуляризации, совместное правдоподобие данных и модели. Принцип максимума апостериорной вероятности.
* Гауссовский и лапласовский регуляризаторы.
* Гауссовский и лапласовский регуляризаторы.
-
* [[Логистическая регрессия]]. Принцип максимума правдоподобия и логарифмическая функция потерь. [[Метод стохастического градиента]] для логарифмической функции потерь. Многоклассовая логистическая регрессия. Регуляризованная логистическая регрессия. [[Калибровка Платта]].
+
* [[Логистическая регрессия]]. Принцип максимума правдоподобия и логарифмическая функция потерь. [[Метод стохастического градиента]] для логарифмической функции потерь. Многоклассовая логистическая регрессия. Регуляризованная логистическая регрессия.
<!--
<!--
 +
* [[Калибровка Платта]].
* Функции потерь, зависящие от цены ошибок. [[Кривая ошибок]] (ROC curve). Алгоритм эффективного построения ROC-кривой.
* Функции потерь, зависящие от цены ошибок. [[Кривая ошибок]] (ROC curve). Алгоритм эффективного построения ROC-кривой.
* Градиентный метод максимизации AUC.
* Градиентный метод максимизации AUC.
Строка 77: Строка 85:
== Нейронные сети: градиентные методы оптимизации ==
== Нейронные сети: градиентные методы оптимизации ==
-
Презентация: [[Media:Voron-ML-ANN-slides.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 19.09.2020}}.
+
Презентация: [[Media:Voron-ML-ANN-slides.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 20.09.2024}}.
 +
Видеозапись: [https://youtu.be/g5B-OiSb9EQ?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/6AyE5bzFWQs Семинар]
* Биологический нейрон, [[модель МакКаллока-Питтса]] как [[линейный классификатор]]. Функции активации.
* Биологический нейрон, [[модель МакКаллока-Питтса]] как [[линейный классификатор]]. Функции активации.
* Проблема полноты. [[Задача исключающего или]]. Полнота двухслойных сетей в пространстве булевых функций.
* Проблема полноты. [[Задача исключающего или]]. Полнота двухслойных сетей в пространстве булевых функций.
Строка 90: Строка 99:
== Метрические методы классификации и регрессии ==
== Метрические методы классификации и регрессии ==
-
Презентация: [[Media:Voron-ML-Metric-slides.pdf|(PDF,&nbsp;3,2&nbsp;МБ)]] {{важно|— обновление 05.03.2020}}.
+
Презентация: [[Media:Voron-ML-Metric-slides.pdf|(PDF,&nbsp;3,9&nbsp;МБ)]] {{важно|— обновление 03.10.2024}}.
-
 
+
Видеозапись: [https://youtu.be/-HBRFLcEk0U?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/BlPOOpFhhQE Семинар]
* Гипотезы компактности и непрерывности.
* Гипотезы компактности и непрерывности.
* Обобщённый [[метрический классификатор]].
* Обобщённый [[метрический классификатор]].
Строка 111: Строка 120:
== Метод опорных векторов ==
== Метод опорных векторов ==
-
Презентация: [[Media:Voron-ML-Lin-SVM.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 24.03.2020}}.
+
Презентация: [[Media:Voron-ML-Lin-SVM.pdf|(PDF,&nbsp;1,3&nbsp;МБ)]] {{важно|— обновление 3.10.2024}}.
 +
Видеозапись: [https://youtu.be/AjIM8f8XgM8?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy&t=34 Лекция] [https://youtu.be/Y--tUWQ5JaY Семинар]
* Оптимальная разделяющая гиперплоскость. Понятие [[зазор]]а между классами (margin).
* Оптимальная разделяющая гиперплоскость. Понятие [[зазор]]а между классами (margin).
* Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
* Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
Строка 126: Строка 136:
--->
--->
-
== Многомерная линейная регрессия ==
+
== Линейные модели регрессии ==
-
Презентация: [[Media:Voron-ML-regression-slides.pdf|(PDF,&nbsp;1,2&nbsp;MБ)]] {{важно|— обновление 10.10.2020}}.
+
Презентация: [[Media:Voron-ML-regression-slides.pdf|(PDF,&nbsp;1,1&nbsp;MБ)]] {{важно|— обновление 11.10.2024}}.
 +
Видеозапись: [https://youtu.be/23F9RRazGzQ?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy&t=10 Лекция] [https://youtu.be/t5imStVGC7Y Семинар]
* Задача регрессии, [[многомерная линейная регрессия]].
* Задача регрессии, [[многомерная линейная регрессия]].
* [[Метод наименьших квадратов]], его вероятностный смысл и геометрический смысл.
* [[Метод наименьших квадратов]], его вероятностный смысл и геометрический смысл.
Строка 145: Строка 156:
== Нелинейная регрессия ==
== Нелинейная регрессия ==
-
Презентация: [[Media:Voron-ML-regress-non-slides.pdf|(PDF,&nbsp;0,7&nbsp;MБ)]] {{важно|— обновление 17.10.2020}}.
+
Презентация: [[Media:Voron-ML-regress-non-slides.pdf|(PDF,&nbsp;0,8&nbsp;MБ)]] {{важно|— обновление 04.05.2024}}.
 +
Видеозапись: [https://youtu.be/B1GSBTmZh9s?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/WhQT3J1PJfI Семинар]
* [[Метод Ньютона-Рафсона]], [[метод Ньютона-Гаусса]].
* [[Метод Ньютона-Рафсона]], [[метод Ньютона-Гаусса]].
* Обобщённая аддитивная модель (GAM): [[метод настройки с возвращениями]] (backfitting) Хасти-Тибширани.
* Обобщённая аддитивная модель (GAM): [[метод настройки с возвращениями]] (backfitting) Хасти-Тибширани.
Строка 152: Строка 164:
* Неквадратичные функции потерь. Метод наименьших модулей. Квантильная регрессия. Пример прикладной задачи: прогнозирование потребительского спроса.
* Неквадратичные функции потерь. Метод наименьших модулей. Квантильная регрессия. Пример прикладной задачи: прогнозирование потребительского спроса.
* Робастная регрессия, функции потерь с горизонтальными асимптотами.
* Робастная регрессия, функции потерь с горизонтальными асимптотами.
-
<!---
 
-
* [[Логистическая регрессия]]. Гипотеза экспоненциальности функций правдоподобия классов. Теорема о линейности байесовского оптимального классификатора. Оценивание апостериорных вероятностей классов с помощью сигмоидной функции активации.
 
-
--->
 
-
== Критерии выбора моделей и методы отбора признаков ==
+
== Качество классификации и отбор признаков ==
Текст лекций: [[Media:Voron-ML-Modeling.pdf|(PDF,&nbsp;330&nbsp;КБ)]].<br/>
Текст лекций: [[Media:Voron-ML-Modeling.pdf|(PDF,&nbsp;330&nbsp;КБ)]].<br/>
-
Презентация: [[Media:Voron-ML-Quality-slides.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 25.10.2020}}.
+
Презентация: [[Media:Voron-ML-Quality-slides.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
-
 
+
Видеозапись: [https://youtu.be/AMcg9YBseSI?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/fdb_cmG6hl8 Семинар]
* Критерии качества классификации: чувствительность и специфичность, ROC-кривая и AUC, точность и полнота, AUC-PR.
* Критерии качества классификации: чувствительность и специфичность, ROC-кривая и AUC, точность и полнота, AUC-PR.
* Внутренние и [[внешние критерии]]. Эмпирические и аналитические критерии.
* Внутренние и [[внешние критерии]]. Эмпирические и аналитические критерии.
Строка 182: Строка 191:
== Логические методы классификации ==
== Логические методы классификации ==
Текст лекций: [[Media:Voron-ML-Logic.pdf|(PDF,&nbsp;625&nbsp;КБ)]].<br/>
Текст лекций: [[Media:Voron-ML-Logic.pdf|(PDF,&nbsp;625&nbsp;КБ)]].<br/>
-
Презентация: [[Media:Voron-ML-Logic-slides.pdf|(PDF,&nbsp;1.8&nbsp;МБ)]] {{важно| — обновление 20.10.2020}}.
+
Презентация: [[Media:Voron-ML-Logic-slides.pdf|(PDF,&nbsp;1.3&nbsp;МБ)]] {{важно| — обновление 04.05.2024}}.
-
 
+
Видеозапись: [https://www.youtube.com/watch?v=M1z7d1ksbA8&list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] <!--[https://youtu.be/OP2rsn478Fk 2020]-->
 +
[https://youtu.be/Ap55F1IoTfk Семинар]
* Понятие [[логическая закономерность|логической закономерности]].
* Понятие [[логическая закономерность|логической закономерности]].
* Параметрические семейства закономерностей: конъюнкции пороговых правил, синдромные правила, шары, гиперплоскости.
* Параметрические семейства закономерностей: конъюнкции пороговых правил, синдромные правила, шары, гиперплоскости.
Строка 197: Строка 207:
* Решающий пень. [[Бинаризация признаков]]. Алгоритм разбиения области значений признака на информативные зоны.
* Решающий пень. [[Бинаризация признаков]]. Алгоритм разбиения области значений признака на информативные зоны.
* [[Решающий список]]. Жадный алгоритм синтеза списка. Преобразование решающего дерева в решающий список.
* [[Решающий список]]. Жадный алгоритм синтеза списка. Преобразование решающего дерева в решающий список.
-
 
+
<!---
'''Факультатив'''
'''Факультатив'''
* Асимптотическая эквивалентность статистического и энтропийного критерия информативности.
* Асимптотическая эквивалентность статистического и энтропийного критерия информативности.
-
 
+
--->
-
== Поиск ассоциативных правил ==
+
-
Презентация: [[Media:Voron-ML-AssocRules-slides.pdf|(PDF,&nbsp;1.3&nbsp;МБ)]] {{важно| — обновление 7.11.2020}}.
+
-
 
+
-
* Понятие [[Ассоциативное правило|ассоциативного правила]] и его связь с понятием логической закономерности.
+
-
* Примеры прикладных задач: [[анализ рыночных корзин]], выделение терминов и тематики текстов.
+
-
* [[Алгоритм APriori]]. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
+
-
* [[Алгоритм FP-growth]]. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
+
-
* Общее представление о динамических и иерархических методах поиска ассоциативных правил.
+
== Линейные ансамбли ==
== Линейные ансамбли ==
Текст лекций: [[Media:Voron-ML-Compositions.pdf|(PDF,&nbsp;1&nbsp;MБ)]].<br/>
Текст лекций: [[Media:Voron-ML-Compositions.pdf|(PDF,&nbsp;1&nbsp;MБ)]].<br/>
-
Презентация: [[Media:Voron-ML-Compositions1-slides.pdf|(PDF,&nbsp;1.0&nbsp;МБ)]] {{важно|— обновление 14.11.2020}}.
+
Презентация: [[Media:Voron-ML-Compositions1-slides.pdf|(PDF,&nbsp;1.5&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
-
 
+
Видеозапись: [https://youtu.be/96xMfQ7ZnGc?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/ZS82juA9098 Семинар]
* Основные понятия: [[базовый алгоритм]], [[корректирующая операция]].
* Основные понятия: [[базовый алгоритм]], [[корректирующая операция]].
* [[Простое голосование]] (комитет большинства).
* [[Простое голосование]] (комитет большинства).
Строка 226: Строка 228:
== Продвинутые методы ансамблирования ==
== Продвинутые методы ансамблирования ==
-
Презентация: [[Media:Voron-ML-Compositions-slides2.pdf|(PDF,&nbsp;1.2&nbsp;МБ)]] {{важно|— обновление 22.11.2020}}.
+
Презентация: [[Media:Voron-ML-Compositions-slides2.pdf|(PDF,&nbsp;1.5&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
-
 
+
Видеозапись: [https://youtu.be/IG7XySody7w?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/JaxB8PdbeUw Семинар]
* Виды ансамблей. Теоретические обоснования. Анализ смещения и разброса для простого голосования.
* Виды ансамблей. Теоретические обоснования. Анализ смещения и разброса для простого голосования.
* [[Градиентный бустинг]]. Стохастический градиентный бустинг.
* [[Градиентный бустинг]]. Стохастический градиентный бустинг.
Строка 238: Строка 240:
* Построение смеси алгоритмов с помощью EM-подобного алгоритма.
* Построение смеси алгоритмов с помощью EM-подобного алгоритма.
<!---
<!---
-
* ''[[Решающий список]] (комитет старшинства). Алгоритм обучения. Стратегия выбора классов для базовых алгоритмов.''
 
* ''Нелинейная монотонная корректирующая операция. Случай классификации. Случай регрессии. Задача монотонизации выборки, изотонная регрессия.''
* ''Нелинейная монотонная корректирующая операция. Случай классификации. Случай регрессии. Задача монотонизации выборки, изотонная регрессия.''
-
=== Метод комитетов ===
 
-
* Общее понятие: [[комитет]] системы ограничений. Комитеты большинства, простое и взвешенное голосование (''z,p''-комитеты).
 
-
* Теоремы о существовании комитетного решения.
 
-
* Сопоставление комитета линейных неравенств с нейронной сетью.
 
-
* [[Максимальная совместная подсистема]], [[минимальный комитет]]. Теоремы об ''NP''-полноте задачи поиска минимального комитета.
 
-
* Алгоритм построения комитета, близкого к минимальному. Верхняя оценка числа членов комитета.
 
=== Бустинг алгоритмов ранжирования ===
=== Бустинг алгоритмов ранжирования ===
* Задача ранжирования. Примеры: ранжирование результатов текстового поиска, задача [[Netflix]].
* Задача ранжирования. Примеры: ранжирование результатов текстового поиска, задача [[Netflix]].
Строка 252: Строка 247:
* Двудольная задача. Сведение попарного функционала качества к поточечному.
* Двудольная задача. Сведение попарного функционала качества к поточечному.
=== Взвешенное голосование логических закономерностей ===
=== Взвешенное голосование логических закономерностей ===
-
* Применение алгоритма бустинга [[AdaBoost]] к закономерностям. Критерий информативности в бустинге.
 
* [[Решающий лес]] и бустинг над решающими деревьями. ''[[Алгоритм TreeNet]].''
* [[Решающий лес]] и бустинг над решающими деревьями. ''[[Алгоритм TreeNet]].''
* ''Методы синтеза конъюнктивных закономерностей. Псевдокод: [[алгоритм КОРА]], [[алгоритм ТЭМП]].''
* ''Методы синтеза конъюнктивных закономерностей. Псевдокод: [[алгоритм КОРА]], [[алгоритм ТЭМП]].''
-
* Эвристики, обеспечивающие различность и полезность закономерностей. Построение Парето-оптимальных закономерностей. Выравнивание распределения отступов.
 
* ''[[Чередующиеся решающие деревья]] (alternating decision tree).''
* ''[[Чередующиеся решающие деревья]] (alternating decision tree).''
-
* Примеры прикладных задач: кредитный скоринг, прогнозирование ухода клиентов.
 
=== Алгоритмы вычисления оценок ===
=== Алгоритмы вычисления оценок ===
* [[Принцип частичной прецедентности]]. Структура [[Алгоритмы вычисления оценок|Алгоритмов вычисления оценок]].
* [[Принцип частичной прецедентности]]. Структура [[Алгоритмы вычисления оценок|Алгоритмов вычисления оценок]].
Строка 267: Строка 259:
== Оценивание плотности и байесовская классификация ==
== Оценивание плотности и байесовская классификация ==
-
Презентация: [[Media:Voron-ML-BTC-EM-slides.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 6.12.2020}}.
+
Презентация: [[Media:Voron-Density-Bayes-slides.pdf|(PDF,&nbsp;1,8&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
-
 
+
Видеозапись: [https://youtu.be/dujnHz0vHY8?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/M8A0Wu5iPwQ Семинар]
-
* Параметрическое оценивание плотности. [[Многомерное нормальное распределение]], геометрическая интерпретация. Выборочные оценки параметров многомерного нормального распределения. Проблемы [[мультиколлинеарность|мультиколлинеарности]] и [[переобучение|переобучения]]. [[Регуляризация]] ковариационной матрицы.
+
<!---Видеозапись: [https://youtu.be/hv3a_XOKUXk Лекция] [https://youtu.be/M8A0Wu5iPwQ Семинар]--->
 +
<!---Видеозапись: [https://youtu.be/ly7v6W9-lB8 Лекция] [https://youtu.be/M8A0Wu5iPwQ Семинар]--->
 +
* Параметрическое оценивание плотности. [[Многомерное нормальное распределение]], геометрическая интерпретация.
 +
* Выборочные оценки параметров многомерного нормального распределения. Проблемы [[мультиколлинеарность|мультиколлинеарности]] и [[переобучение|переобучения]]. [[Регуляризация]] ковариационной матрицы.
* Непараметрическое оценивание плотности. [[Ядерная оценка плотности Парзена-Розенблатта]]. Одномерный и многомерный случаи.
* Непараметрическое оценивание плотности. [[Ядерная оценка плотности Парзена-Розенблатта]]. Одномерный и многомерный случаи.
-
* [[Смесь распределений]]. [[EM-алгоритм]] как метод простых итераций. Выбор числа компонентов смеси. Пошаговая стратегия. Априорное распределение Дирихле.
+
* [[Смесь распределений]]. [[EM-алгоритм]] как метод простых итераций.
 +
<!---
 +
* ''Матричное дифференцирование. Вывод оценок параметров многомерного нормального распределения.''
 +
* Детали реализации EM-алгоритма. Критерий останова. Выбор начального приближения.
 +
* Обобщённый EM-алгоритм. Стохастический EM-алгоритм.
 +
* Выбор числа компонентов смеси. Пошаговая стратегия. Иерархический EM-алгоритм.
 +
== Байесовская теория классификации ==
 +
Презентация: [[Media:Voron-ML-BTC-slides.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 27.11.2021}}.
 +
Видеозапись: [https://youtu.be/ly7v6W9-lB8 Лекция] [https://youtu.be/M8A0Wu5iPwQ Семинар]
 +
--->
* Байесовская теория классификации. Оптимальный байесовский классификатор.
* Байесовская теория классификации. Оптимальный байесовский классификатор.
 +
* Генеративные и дискриминативные модели классификации.
* Наивный байесовский классификатор. Линейный наивный байесовский классификатор в случае экспоненциального семейства распределений.
* Наивный байесовский классификатор. Линейный наивный байесовский классификатор в случае экспоненциального семейства распределений.
* [[Метод парзеновского окна]]. Выбор функции ядра. Выбор ширины окна, переменная ширина окна.
* [[Метод парзеновского окна]]. Выбор функции ядра. Выбор ширины окна, переменная ширина окна.
Строка 278: Строка 283:
* Смесь многомерных нормальных распределений. [[Сеть радиальных базисных функций]] (RBF) и применение EM-алгоритма для её настройки. Сравнение RBF-сети и SVM с гауссовским ядром.
* Смесь многомерных нормальных распределений. [[Сеть радиальных базисных функций]] (RBF) и применение EM-алгоритма для её настройки. Сравнение RBF-сети и SVM с гауссовским ядром.
<!---
<!---
 +
* Мультиномиальный наивный байесовский классификатор для классификации текстов.
* ''Связь линейного дискриминанта Фишера с [[метод наименьших квадратов|методом наименьших квадратов]].''
* ''Связь линейного дискриминанта Фишера с [[метод наименьших квадратов|методом наименьших квадратов]].''
-
* ''Матричное дифференцирование. Вывод оценок параметров многомерного нормального распределения.''
 
* Жадное добавление признаков в линейном дискриминанте, ''[[метод редукции размерности]] Шурыгина.''
* Жадное добавление признаков в линейном дискриминанте, ''[[метод редукции размерности]] Шурыгина.''
* ''Робастное оценивание. Цензурирование выборки (отсев объектов-выбросов).''
* ''Робастное оценивание. Цензурирование выборки (отсев объектов-выбросов).''
-
== Разделение смеси распределений ==
 
-
Презентация: [[Media:Voron-ML-Bayes2-slides.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 27.04.2017}}.
 
-
* Детали реализации EM-алгоритма. Критерий останова. Выбор начального приближения.
 
-
* Обобщённый EM-алгоритм. Стохастический EM-алгоритм. Иерархический EM-алгоритм.
 
-
* Задача кластеризации. [[EM-алгоритм]] и [[Алгоритм k средних]] (k-means).
 
-
* Задача частичного обучения.
 
--->
--->
== Кластеризация и частичное обучение ==
== Кластеризация и частичное обучение ==
-
Презентация: [[Media:Voron-ML-Clustering-SSL-slides.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 5.12.2020}}.
+
Презентация: [[Media:Voron-ML-Clustering-SSL-slides.pdf|(PDF,&nbsp;2,3&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
 +
Видеозапись: [https://youtu.be/Rm4rJiDFi2k?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/pobOLM1MVfc Семинар]
 +
<!--[https://youtu.be/VxedxFC5d2I 2020]-->
* Постановка задачи [[кластеризация|кластеризации]]. Примеры прикладных задач. Типы кластерных структур.
* Постановка задачи [[кластеризация|кластеризации]]. Примеры прикладных задач. Типы кластерных структур.
* Постановка задачи Semisupervised Learning, примеры приложений.
* Постановка задачи Semisupervised Learning, примеры приложений.
-
* Оптимизационные постановки задач кластеризации и частичного обучения.
+
* Критерии качества кластеризации, коэффициент силуэта, BCubed-меры точности и полноты.
* [[Алгоритм k-средних]] и [[ЕМ-алгоритм]] для разделения гауссовской смеси.
* [[Алгоритм k-средних]] и [[ЕМ-алгоритм]] для разделения гауссовской смеси.
* [[Алгоритм DBSCAN]].
* [[Алгоритм DBSCAN]].
Строка 315: Строка 316:
* [[Алгоритм t-SNE]]
* [[Алгоритм t-SNE]]
-->
-->
 +
 +
== Детекция аномалий и робастные методы ==
 +
Презентация: [[Media:Voron-ML-outliers.pdf|(PDF,&nbsp;1.8&nbsp;МБ)]] {{важно| — обновление 04.05.2024}}.
 +
* Задачи выявления аномалий. Эвристические методы выявления аномалий. Алгоритм LOWESS.
 +
* Теория робастного обучения. Схема итерационного перевзвешивания объектов IRS.
 +
* Семейство робастных агрегирующих функций.
 +
* Итерационное перевзвешивание для произвольной агрегирующей функции. Алгоритм IR-ERM.
 +
* Робастная регрессия. Робастная классификация. Робастная кластеризация.
 +
* Выявление аномалий с помощью одноклассового SVM.
 +
* Парадигмы обучения PU-Learning, One-Class Classification, Open-Set Recognition, Open-World Recognition.
= Семестр 2. Прикладные модели машинного обучения =
= Семестр 2. Прикладные модели машинного обучения =
-
== Нейронные сети глубокого обучения ==
+
== Глубокие нейронные сети ==
-
Презентация: [[Media:Voron-ML-DeepLearning-slides.pdf|(PDF,&nbsp;3,9&nbsp;МБ)]] {{важно|— обновление 05.01.2021}}.
+
Презентация: [[Media:Voron-ML-DeepLearning-slides.pdf|(PDF,&nbsp;4,1&nbsp;МБ)]] {{важно|— обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/x3TKdZi7Mo4 Лекция] [https://youtu.be/_zhKsIze8QU Семинар]
 +
* Обоснования глубоких нейронных сетей: выразительные возможности, скорость сходимости при избыточной параметризации.
* Свёрточные нейронные сети (CNN) для изображений. Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
* Свёрточные нейронные сети (CNN) для изображений. Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
 +
* ResNet: остаточная нейронная сеть (residual NN). Сквозные связи между слоями (skip connection).
* Свёрточные сети для сигналов, текстов, графов, игр.
* Свёрточные сети для сигналов, текстов, графов, игр.
* Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
* Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
* Сети долгой кратковременной памяти (Long short-term memory, LSTM).
* Сети долгой кратковременной памяти (Long short-term memory, LSTM).
-
* Рекуррентная сеть Gated Recurrent Unit (GRU).
+
* Рекуррентные сети Gated Recurrent Unit (GRU) и Simple Recurrent Unit (SRU).
-
* Векторные представления дискретных данных.
+
-
* Перенос обучения (transfer learning).
+
-
* Самообучение (self-supervised learning).
+
-
* Генеративные состязательные сети (GAN, generative adversarial net).
+
== Нейронные сети с обучением без учителя ==
== Нейронные сети с обучением без учителя ==
-
Презентация: [[Media:Voron-ML-ANN-Unsupervised-slides.pdf|(PDF,&nbsp;2,3&nbsp;МБ)]] {{важно|— обновление 03.10.2020}}.
+
Презентация: [[Media:Voron-ML-ANN-Unsupervised-slides.pdf|(PDF,&nbsp;2,3&nbsp;МБ)]] {{важно|— обновление 09.02.2024}}.
 +
Видеозапись: [https://youtu.be/wfbe2yaXAkI Лекция] [https://youtu.be/wCX-8AiYYzk Семинар]
* [[Нейронная сеть Кохонена]]. [[Конкурентное обучение]], стратегии WTA и WTM.
* [[Нейронная сеть Кохонена]]. [[Конкурентное обучение]], стратегии WTA и WTM.
* [[Самоорганизующаяся карта Кохонена]]. Применение для визуального анализа данных. Искусство интерпретации карт Кохонена.
* [[Самоорганизующаяся карта Кохонена]]. Применение для визуального анализа данных. Искусство интерпретации карт Кохонена.
-
<!--* [[Сети встречного распространения]], их применение для кусочно-постоянной и гладкой аппроксимации функций.
 
-
-->
 
* [[Автокодировщик]]. Линейный AE, SAE, DAE, CAE, RAE, VAE, AE для классификации, многослойный AE.
* [[Автокодировщик]]. Линейный AE, SAE, DAE, CAE, RAE, VAE, AE для классификации, многослойный AE.
 +
* Пред-обучение нейронных сетей (pre-training).
* Перенос обучения (transfer learning).
* Перенос обучения (transfer learning).
 +
* Многозадачное обучение (multi-task learning).
* Самостоятельное обучение (self-supervised learning).
* Самостоятельное обучение (self-supervised learning).
* Дистилляция моделей или суррогатное моделирование.
* Дистилляция моделей или суррогатное моделирование.
-
* Обучение с использованием привилегированной информации.
+
* Обучение с использованием привилегированной информации (learning using priveleged information, LUPI).
-
* Генеративные состязательные сети (GAN).
+
* Генеративные состязательные сети (generative adversarial net, GAN).
== Векторные представления текстов и графов ==
== Векторные представления текстов и графов ==
-
Презентация: [[Media:Voron-ML-Embeddings-slides.pdf|(PDF,&nbsp;1,3&nbsp;МБ)]] {{важно|— обновление 14.10.2020}}.
+
Презентация: [[Media:Voron-ML-Embeddings-slides.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/QJK8PRfKD2g Лекция] [https://youtu.be/NtS9Dp4XhGE Семинар]
* Векторные представления текста. Гипотеза дистрибутивной семантики.
* Векторные представления текста. Гипотеза дистрибутивной семантики.
-
* Модели [[word2vec]], [[FastText]].
+
* Модели CBOW и SGNS из программы [[word2vec]]. Иерархический SoftMax.
 +
* Модель [[FastText]].
* Векторные представления графов.
* Векторные представления графов.
-
* [[Многомерное шкалирование]].
+
* [[Многомерное шкалирование]] (multidimensional scaling, MDS).
 +
* Векторное представление соседства (stochastic neighbor embedding, SNE и tSNE).
 +
* Матричные разложения (graph factorization).
* Модели случайных блужданий [[DeepWalk]], [[node2vec]].
* Модели случайных блужданий [[DeepWalk]], [[node2vec]].
* Обобщённый автокодировщик на графах [[GraphEDM]].
* Обобщённый автокодировщик на графах [[GraphEDM]].
-
* Векторные представления гиперграфов.
+
* Представление о графовых нейронных сетях (graph neural network, GNN). Передача сообщений по графу (message passing).
-
* Тематические модели транзакционных данных. EM-алгоритм для тематической модели гиперграфа.
+
-
* Примеры транзакционных моделей на гиперграфах.
+
== Модели внимания и трансформеры ==
== Модели внимания и трансформеры ==
-
Презентация: [[Media:Voron-ML-Attention-slides.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 7.11.2020}}.
+
Презентация: [[Media:Voron-ML-Attention-slides.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 05.05.2024}}.
-
* Задачи обработки последовательностей.
+
Видеозапись: [https://youtu.be/KhMweP00S44 Лекция] [https://youtu.be/GfUadGOcwtc Семинар]
-
* Рекуррентная сеть с моделью внимания. Разновидности моделей внимания.
+
 
-
* Критерии обучения и оценивание качества (предобучение).
+
* Задачи обработки и преобразования последовательностей (sequence to sequence).
-
* Прикладные задачи: машинный перевод, аннотирование изображений (эквивалентность MHSA и CNN).
+
* Рекуррентная сеть с моделью внимания.
-
* Модели внимания на графах.
+
* Разновидности моделей внимания: многомерное, иерархическое, Query–Key–Value, внутреннее (self-attention).
-
* Трансформеры для текстов, изображений, графов.
+
* Модели внимания на графах (Graph Attention Network). Задача классификации вершин графа.
 +
* Трансформеры. Особенности архитектуры кодировщика и декодировщка.
 +
* Критерии обучения и оценивание качества (предобучение). Модель BERT.
 +
<!-- * Эквивалентность MHSA и CNN-->
 +
* Прикладные задачи: машинный перевод, аннотирование изображений.
 +
* Модели внимания и трансформеры для текстов, изображений, графов.
== Тематическое моделирование ==
== Тематическое моделирование ==
Строка 372: Строка 390:
Презентация 1: [[Media:Voron-ML-TopicModels-slides.pdf|(PDF,&nbsp;2.8&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
Презентация 1: [[Media:Voron-ML-TopicModels-slides.pdf|(PDF,&nbsp;2.8&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
Презентация 2: [[Media:Voron-ML-TopicModels-slides-2.pdf|(PDF,&nbsp;6.1&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
Презентация 2: [[Media:Voron-ML-TopicModels-slides-2.pdf|(PDF,&nbsp;6.1&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
 +
Семинар 15.11.2020: [[Media:Voron-ML-TopicModeling-seminar-slides.pdf|(PDF,&nbsp;3.8&nbsp;МБ)]]
--->
--->
-
Презентация: [[Media:Voron-ML-TopicModeling-slides.pdf|(PDF,&nbsp;7.1&nbsp;МБ)]], Семинар: [[Media:Voron-ML-TopicModeling-seminar-slides.pdf|(PDF,&nbsp;3.8&nbsp;МБ)]] {{важно| — обновление 15.11.2020}}.
+
Презентация: [[Media:Voron-ML-TopicModeling-slides.pdf|(PDF,&nbsp;3.9&nbsp;МБ)]] {{важно| — обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/Eqm8-YqUzAc Лекция] [https://youtu.be/xxwMuxM4AEg Семинар]
 +
 
* Задача [[тематическое моделирование|тематического моделирования]] коллекции текстовых документов. [[Метод максимума правдоподобия]].
* Задача [[тематическое моделирование|тематического моделирования]] коллекции текстовых документов. [[Метод максимума правдоподобия]].
* Лемма о максимизации гладкой функции на симплексах (применение условий Каруша–Куна–Таккера).
* Лемма о максимизации гладкой функции на симплексах (применение условий Каруша–Куна–Таккера).
Строка 386: Строка 407:
== Обучение ранжированию ==
== Обучение ранжированию ==
-
Презентация: [[Media:Voron-ML-Ranking-slides.pdf|(PDF,&nbsp;0,8&nbsp;МБ)]] {{важно|— обновление 3.11.2020}}.
+
Презентация: [[Media:Voron-ML-Ranking-slides.pdf|(PDF,&nbsp;0,9&nbsp;МБ)]] {{важно|— обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/kQ5PeshAO1w Лекция] [https://youtu.be/cN5WoTRJYtY Семинар]
 +
 
* Постановка задачи [[Обучение ранжированию|обучения ранжированию]]. Примеры.
* Постановка задачи [[Обучение ранжированию|обучения ранжированию]]. Примеры.
* Поточечные методы Ранговая регрессия. Ранговая классификация, OC-SVM.
* Поточечные методы Ранговая регрессия. Ранговая классификация, OC-SVM.
Строка 396: Строка 419:
== Рекомендательные системы ==
== Рекомендательные системы ==
-
Презентация: [[Media:Voron-ML-CF.pdf|(PDF,&nbsp;0.8&nbsp;МБ)]] {{важно| — обновление 11.11.2020}}.
+
Презентация: [[Media:Voron-ML-CF.pdf|(PDF,&nbsp;0.9&nbsp;МБ)]] {{важно| — обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/FW5UdtMwlpw Лекция] [https://youtu.be/Rge1_Bnr8JI Семинар]
 +
 
* Задачи [[коллаборативная фильтрация|коллаборативной фильтрации]], [[транзакционные данные]].
* Задачи [[коллаборативная фильтрация|коллаборативной фильтрации]], [[транзакционные данные]].
* Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства.
* Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства.
Строка 409: Строка 434:
* Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).
* Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).
-
== Прогнозирование временных рядов ==
+
== Поиск ассоциативных правил ==
 +
Презентация: [[Media:Voron-ML-AssocRules-slides.pdf|(PDF,&nbsp;1.8&nbsp;МБ)]] {{важно| — обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/jKl2jFQVh94 Лекция] [https://youtu.be/WmJKfCl9P7Y Семинар]
 +
* Понятие [[Ассоциативное правило|ассоциативного правила]] и его связь с понятием логической закономерности.
 +
* Примеры прикладных задач: [[анализ рыночных корзин]], выделение терминов и тематики текстов.
 +
* [[Алгоритм APriori]]. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
 +
* [[Алгоритм FP-growth]]. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
 +
* Общее представление о динамических и иерархических методах поиска ассоциативных правил.
 +
* [[Алгоритм TopMine]] для поиска коллокаций и терминов в текстах.
 +
<!---
 +
== Адаптивные методы прогнозирования ==
Презентация: [[Media:Voron-ML-forecasting-slides.pdf|(PDF,&nbsp;0,9&nbsp;MБ)]] {{важно|— обновление 14.12.2019}}.
Презентация: [[Media:Voron-ML-forecasting-slides.pdf|(PDF,&nbsp;0,9&nbsp;MБ)]] {{важно|— обновление 14.12.2019}}.
 +
Видеозапись: [https://youtu.be/HyWm8FKzyPw Лекция] [https://youtu.be/hxKdtWVqEhg Семинар]
 +
[https://youtu.be/u433nrxdf5k Видеозапись лекции Евгения Рябенко]
 +
* Задача прогнозирования временных рядов. Примеры приложений.
* Задача прогнозирования временных рядов. Примеры приложений.
* [[Экспоненциальное сглаживание|Экспоненциальное скользящее среднее]]. [[Модель Хольта]]. [[Модель Тейла-Вейджа]]. [[Модель Хольта-Уинтерса]].
* [[Экспоненциальное сглаживание|Экспоненциальное скользящее среднее]]. [[Модель Хольта]]. [[Модель Тейла-Вейджа]]. [[Модель Хольта-Уинтерса]].
Строка 417: Строка 455:
* Адаптивная селективная модель. Адаптивная композиция моделей.
* Адаптивная селективная модель. Адаптивная композиция моделей.
* Локальная адаптация весов с регуляризацией.
* Локальная адаптация весов с регуляризацией.
 +
--->
== Инкрементное и онлайновое обучение ==
== Инкрементное и онлайновое обучение ==
-
Презентация: [[Media:Voron-ML-incremental-slides.pdf|(PDF,&nbsp;0,9&nbsp;MБ)]] {{важно|— обновление 02.12.2020}}.
+
Презентация: [[Media:Voron-ML-incremental-slides.pdf|(PDF,&nbsp;1,1&nbsp;MБ)]] {{важно|— обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/3KflU279d_w Лекция] [ Семинар]
 +
 
* Задачи инкрементного и онлайнового обучения. Оценивание инкрементного обучения. Кривые обучения.
* Задачи инкрементного и онлайнового обучения. Оценивание инкрементного обучения. Кривые обучения.
* Ленивое обучение (метрические и непараметрические методы). Онлайновый отбор эталонных объектов.
* Ленивое обучение (метрические и непараметрические методы). Онлайновый отбор эталонных объектов.
* Онлайновый наивный байесовский классификатор.
* Онлайновый наивный байесовский классификатор.
* Онлайновый градиентный спуск OGD. Алгоритм Perceptron. Алгоритм Passive-Aggressive.
* Онлайновый градиентный спуск OGD. Алгоритм Perceptron. Алгоритм Passive-Aggressive.
-
* Рекуррентный метод наименьших квадратов RLS.
 
* Инкрементные решающие деревья ID5R.
* Инкрементные решающие деревья ID5R.
 +
* Рекуррентный метод наименьших квадратов RLS. Формула Шермана-Моррисона.
 +
* Задача прогнозирования временных рядов. Эконометрические временные ряды с трендом и сезонностью.
 +
* [[Экспоненциальное сглаживание|Экспоненциальное скользящее среднее]]. [[Модель Хольта]]. [[Модель Тейла-Вейджа]]. [[Модель Хольта-Уинтерса]].
 +
* Адаптивная селективная модель. Адаптивная композиция моделей.
* Онлайновое обучение ансамбля. Алгоритм Hedge, его свойства и интерпретация в задаче портфельного инвестирования.
* Онлайновое обучение ансамбля. Алгоритм Hedge, его свойства и интерпретация в задаче портфельного инвестирования.
* Онлайновое глубокое обучение. Алгоритм Hedge BackProp.
* Онлайновое глубокое обучение. Алгоритм Hedge BackProp.
-
* Онлайновое обучение новым классам. Проблема катастрофического забывания. Алгоритм iCaRL.
+
<!---* Онлайновое обучение новым классам. Проблема катастрофического забывания. Алгоритм iCaRL.--->
== Обучение с подкреплением ==
== Обучение с подкреплением ==
-
Презентация: [[Media:Voron-ML-RL-slides.pdf|(PDF,&nbsp;1.9&nbsp;МБ)]] {{важно| — обновление 18.11.2020}}.
+
Презентация: [[Media:Voron-ML-RL-slides.pdf|(PDF,&nbsp;1.9&nbsp;МБ)]] {{важно| — обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/B4Fk2KNHzFY Лекция] [https://youtu.be/3Xex0Z5D6O8 Семинар]
 +
 
* Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound).
* Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound).
* Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
* Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
Строка 439: Строка 485:
* Глубокое Q-обучение нейронной сети DQN на примере обучения играм Atari.
* Глубокое Q-обучение нейронной сети DQN на примере обучения играм Atari.
<!---* Метод временных разностей TD. Многошаговое TD-прогнозирование. Обобщения методов временных разностей, SARSA, Q-обучения. --->
<!---* Метод временных разностей TD. Многошаговое TD-прогнозирование. Обобщения методов временных разностей, SARSA, Q-обучения. --->
-
<!---* Модели актор-критик. Модели с непрерывным управлением. --->
 
* Градиентная оптимизация стратегии (policy gradient). Связь с максимизацией log-правдоподобия.
* Градиентная оптимизация стратегии (policy gradient). Связь с максимизацией log-правдоподобия.
 +
* Модели актор-критик. Модели с непрерывным управлением.
* Постановка задачи при моделировании среды. Типизация методов на model-free и model-based.
* Постановка задачи при моделировании среды. Типизация методов на model-free и model-based.
* Контекстный многорукий бандит. Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
* Контекстный многорукий бандит. Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
Строка 446: Строка 492:
== Активное обучение ==
== Активное обучение ==
-
Презентация: [[Media:Voron-ML-AL-slides.pdf|(PDF,&nbsp;1.2&nbsp;МБ)]] {{важно| — обновление 24.11.2020}}.
+
Презентация: [[Media:Voron-ML-AL-slides.pdf|(PDF,&nbsp;2.3&nbsp;МБ)]] {{важно| — обновление 26.04.2024}}.
 +
Видеозапись: [https://youtu.be/kGJ7PPTcUHw Лекция] [https://youtu.be/JlPLaNQXNO8 Семинар]
 +
 
* Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов. Приложения активного обучения.
* Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов. Приложения активного обучения.
* Почему активное обучение быстрее пассивного. Оценивание качества активного обучения. Кривые обучения.
* Почему активное обучение быстрее пассивного. Оценивание качества активного обучения. Кривые обучения.
Строка 459: Строка 507:
* Использование активного обучения в краудсорсинге. Согласование оценок аннотаторов. Назначение заданий аннотаторам.
* Использование активного обучения в краудсорсинге. Согласование оценок аннотаторов. Назначение заданий аннотаторам.
<!---* Применение обучения с подкреплением для активного обучения. Активное томпсоновское сэмплирование.--->
<!---* Применение обучения с подкреплением для активного обучения. Активное томпсоновское сэмплирование.--->
 +
 +
== Интерпретируемость и объяснимость ==
 +
Презентация: [[Media:Voron-ML-xai.pdf|(PDF,&nbsp;3.8&nbsp;МБ)]] {{важно| — обновление 04.05.2024}}.
 +
 +
* Интерпретируемость и объяснимость — цели, задачи, основные понятия
 +
* Интерпретируемые модели машинного обучения
 +
* Оценки значимости признаков в линейной регрессии
 +
* Графики частичной зависимости (Partial Dependence Plot, PDP)
 +
* Графики индивидуальных условных зависимостей (ICE)
 +
* Перестановочные оценки значимости признаков
 +
* Вектор Шепли (из теории кооперативных игр), его свойства, способы оценивания, применение в линейной регрессии
 +
* Суррогатное моделирование в окрестности объекта.
 +
* Метод LIME (Local Interpretable Model-agnostic Explanations)
 +
* Метод якорей (Anchors)
 +
* Метод SHAP (SHapley Additive exPlanations)
 +
* Метод Shapley Kernel
 +
* Метод SAGE (Shapley Additive Global importancE)
 +
* Вектор Шепли для объектов, метод Gradient Shapley
 +
* Контрфактическое объяснение, метод поиска контрфактов (Counterfactual explanations)
== Заключительная лекция ==
== Заключительная лекция ==
-
Презентация: [[Media:Voron-ML-final.pdf|(PDF,&nbsp;2.0&nbsp;МБ)]] {{важно| — обновление 14.12.2019}}.
+
Презентация: [[Media:Voron-ML-final.pdf|(PDF,&nbsp;3.9&nbsp;МБ)]] {{важно| — обновление 4.05.2021}}.
 +
Видеозапись: [https://youtu.be/eDptWKPrIy4 Лекция]
-
Обзор курса. Оптимизационные задачи машинного обучения.
+
Обзор курса. Постановки оптимизационных задач в машинном обучении.
= См. также =
= См. также =

Версия 20:30, 10 октября 2024

Содержание

Теория обучения машин (machine learning, машинное обучение) находится на стыке прикладной статистики, численных методов оптимизации, дискретного анализа, и за последние 60 лет оформилась в самостоятельную математическую дисциплину. Методы машинного обучения составляют основу ещё более молодой дисциплины — интеллектуального анализа данных (data mining).

В курсе рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Теоремы в основном приводятся без доказательств.

Все методы излагаются по единой схеме:

  • исходные идеи и эвристики;
  • их формализация и математическая теория;
  • описание алгоритма в виде слабо формализованного псевдокода;
  • анализ достоинств, недостатков и границ применимости;
  • пути устранения недостатков;
  • сравнение и взаимосвязи с другими методами.
  • примеры прикладных задач.

На семинарах разбираются дополнительные примеры, аспекты практического применения, работа с данными, программирование, проведение вычислительных экспериментов.

Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом ACM/IEEE Computing Curricula 2001 по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).

Курс читается

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание математической статистики, методов оптимизации и языка программирования Python желательно, но не обязательно.

Курсивом выделен дополнительный материал, который может разбираться на семинарах.

Замечания для студентов

Семестр 1. Математические основы машинного обучения

Текст лекций: (PDF, 3 МБ) — обновление 4.10.2011.

Основные понятия и примеры прикладных задач

Презентация: (PDF, 1,7 МБ) — обновление 13.09.2024. Видеозапись: Лекция Семинар

Линейный классификатор и стохастический градиент

Презентация: (PDF, 1,2 МБ) — обновление 13.09.2024. Видеозапись: Лекция Семинар

  • Линейный классификатор, модель МакКаллока-Питтса, непрерывные аппроксимации пороговой функции потерь.
  • Бинарная классификация и многоклассовая классификация.
  • Метод стохастического градиента SG.
  • Эвристики: инерция и ускоренный градиент, инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов.
  • Проблема мультиколлинеарности и переобучения, регуляризация или редукция весов (weight decay).
  • Вероятностная постановка задачи классификации. Принцип максимума правдоподобия.
  • Вероятностная интерпретация регуляризации, совместное правдоподобие данных и модели. Принцип максимума апостериорной вероятности.
  • Гауссовский и лапласовский регуляризаторы.
  • Логистическая регрессия. Принцип максимума правдоподобия и логарифмическая функция потерь. Метод стохастического градиента для логарифмической функции потерь. Многоклассовая логистическая регрессия. Регуляризованная логистическая регрессия.

Нейронные сети: градиентные методы оптимизации

Презентация: (PDF, 1,5 МБ) — обновление 20.09.2024. Видеозапись: Лекция Семинар

Метрические методы классификации и регрессии

Презентация: (PDF, 3,9 МБ) — обновление 03.10.2024. Видеозапись: Лекция Семинар

Метод опорных векторов

Презентация: (PDF, 1,3 МБ) — обновление 3.10.2024. Видеозапись: Лекция Семинар

  • Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin).
  • Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
  • Задача квадратичного программирования и двойственная задача. Понятие опорных векторов.
  • Рекомендации по выбору константы C.
  • Функция ядра (kernel functions), спрямляющее пространство, теорема Мерсера.
  • Способы конструктивного построения ядер. Примеры ядер.
  • SVM-регрессия.
  • Регуляризации для отбора признаков: LASSO SVM, Elastic Net SVM, SFM, RFM.
  • Метод релевантных векторов RVM

Линейные модели регрессии

Презентация: (PDF, 1,1 MБ) — обновление 11.10.2024. Видеозапись: Лекция Семинар

Нелинейная регрессия

Презентация: (PDF, 0,8 MБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Качество классификации и отбор признаков

Текст лекций: (PDF, 330 КБ).
Презентация: (PDF, 1,6 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Логические методы классификации

Текст лекций: (PDF, 625 КБ).
Презентация: (PDF, 1.3 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Линейные ансамбли

Текст лекций: (PDF, 1 MБ).
Презентация: (PDF, 1.5 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Продвинутые методы ансамблирования

Презентация: (PDF, 1.5 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Оценивание плотности и байесовская классификация

Презентация: (PDF, 1,8 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Кластеризация и частичное обучение

Презентация: (PDF, 2,3 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

  • Постановка задачи кластеризации. Примеры прикладных задач. Типы кластерных структур.
  • Постановка задачи Semisupervised Learning, примеры приложений.
  • Критерии качества кластеризации, коэффициент силуэта, BCubed-меры точности и полноты.
  • Алгоритм k-средних и ЕМ-алгоритм для разделения гауссовской смеси.
  • Алгоритм DBSCAN.
  • Агломеративная кластеризация, Алгоритм Ланса-Вильямса и его частные случаи.
  • Алгоритм построения дендрограммы. Определение числа кластеров.
  • Свойства сжатия/растяжения и монотонности.
  • Простые эвристические методы частичного обучения: self-training, co-training, co-learning.
  • Трансдуктивный метод опорных векторов TSVM.
  • Алгоритм Expectation-Regularization на основе многоклассовой регуляризированной логистической регрессии.

Детекция аномалий и робастные методы

Презентация: (PDF, 1.8 МБ) — обновление 04.05.2024.

  • Задачи выявления аномалий. Эвристические методы выявления аномалий. Алгоритм LOWESS.
  • Теория робастного обучения. Схема итерационного перевзвешивания объектов IRS.
  • Семейство робастных агрегирующих функций.
  • Итерационное перевзвешивание для произвольной агрегирующей функции. Алгоритм IR-ERM.
  • Робастная регрессия. Робастная классификация. Робастная кластеризация.
  • Выявление аномалий с помощью одноклассового SVM.
  • Парадигмы обучения PU-Learning, One-Class Classification, Open-Set Recognition, Open-World Recognition.

Семестр 2. Прикладные модели машинного обучения

Глубокие нейронные сети

Презентация: (PDF, 4,1 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Обоснования глубоких нейронных сетей: выразительные возможности, скорость сходимости при избыточной параметризации.
  • Свёрточные нейронные сети (CNN) для изображений. Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
  • ResNet: остаточная нейронная сеть (residual NN). Сквозные связи между слоями (skip connection).
  • Свёрточные сети для сигналов, текстов, графов, игр.
  • Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
  • Сети долгой кратковременной памяти (Long short-term memory, LSTM).
  • Рекуррентные сети Gated Recurrent Unit (GRU) и Simple Recurrent Unit (SRU).

Нейронные сети с обучением без учителя

Презентация: (PDF, 2,3 МБ) — обновление 09.02.2024. Видеозапись: Лекция Семинар

  • Нейронная сеть Кохонена. Конкурентное обучение, стратегии WTA и WTM.
  • Самоорганизующаяся карта Кохонена. Применение для визуального анализа данных. Искусство интерпретации карт Кохонена.
  • Автокодировщик. Линейный AE, SAE, DAE, CAE, RAE, VAE, AE для классификации, многослойный AE.
  • Пред-обучение нейронных сетей (pre-training).
  • Перенос обучения (transfer learning).
  • Многозадачное обучение (multi-task learning).
  • Самостоятельное обучение (self-supervised learning).
  • Дистилляция моделей или суррогатное моделирование.
  • Обучение с использованием привилегированной информации (learning using priveleged information, LUPI).
  • Генеративные состязательные сети (generative adversarial net, GAN).

Векторные представления текстов и графов

Презентация: (PDF, 1,6 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Векторные представления текста. Гипотеза дистрибутивной семантики.
  • Модели CBOW и SGNS из программы word2vec. Иерархический SoftMax.
  • Модель FastText.
  • Векторные представления графов.
  • Многомерное шкалирование (multidimensional scaling, MDS).
  • Векторное представление соседства (stochastic neighbor embedding, SNE и tSNE).
  • Матричные разложения (graph factorization).
  • Модели случайных блужданий DeepWalk, node2vec.
  • Обобщённый автокодировщик на графах GraphEDM.
  • Представление о графовых нейронных сетях (graph neural network, GNN). Передача сообщений по графу (message passing).

Модели внимания и трансформеры

Презентация: (PDF, 1,1 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Задачи обработки и преобразования последовательностей (sequence to sequence).
  • Рекуррентная сеть с моделью внимания.
  • Разновидности моделей внимания: многомерное, иерархическое, Query–Key–Value, внутреннее (self-attention).
  • Модели внимания на графах (Graph Attention Network). Задача классификации вершин графа.
  • Трансформеры. Особенности архитектуры кодировщика и декодировщка.
  • Критерии обучения и оценивание качества (предобучение). Модель BERT.
  • Прикладные задачи: машинный перевод, аннотирование изображений.
  • Модели внимания и трансформеры для текстов, изображений, графов.

Тематическое моделирование

Презентация: (PDF, 3.9 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

Обучение ранжированию

Презентация: (PDF, 0,9 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Постановка задачи обучения ранжированию. Примеры.
  • Поточечные методы Ранговая регрессия. Ранговая классификация, OC-SVM.
  • Попарные методы: RankingSVM, RankNet, LambdaRank.
  • Списочные методы.
  • Признаки в задаче ранжирования поисковой выдачи: текстовые, ссылочные, кликовые. TF-IDF, Okapi BM25, PageRank.
  • Критерии качества ранжирования: Precision, MAP, AUC, DCG, NDCG, pFound.
  • Глубокая структурированная семантическая модель DSSM (Deep Structured Semantic Model).

Рекомендательные системы

Презентация: (PDF, 0.9 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Задачи коллаборативной фильтрации, транзакционные данные.
  • Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства.
  • Разреженная линейная модель (Sparse LInear Method, SLIM).
  • Латентные методы на основе матричных разложений. Метод главных компонент для разреженных данных (LFM, Latent Factor Model). Метод стохастического градиента.
  • Неотрицательные матричные разложения NNMF. Метод чередующихся наименьших квадратов ALS. Вероятностный латентный семантический анализ PLSA.
  • Модель с учётом неявной информации (implicit feedback).
  • Автокодировщики для коллаборативной фильтрации.
  • Учёт дополнительных признаковых данных в матричных разложениях и автокодировщиках.
  • Линейная и квадратичная регрессионные модели, libFM.
  • Гиперграфовая транзакционная тематическая модель для учёта дополнительных данных.
  • Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).

Поиск ассоциативных правил

Презентация: (PDF, 1.8 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Понятие ассоциативного правила и его связь с понятием логической закономерности.
  • Примеры прикладных задач: анализ рыночных корзин, выделение терминов и тематики текстов.
  • Алгоритм APriori. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
  • Алгоритм FP-growth. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
  • Общее представление о динамических и иерархических методах поиска ассоциативных правил.
  • Алгоритм TopMine для поиска коллокаций и терминов в текстах.

Инкрементное и онлайновое обучение

Презентация: (PDF, 1,1 MБ) — обновление 05.05.2024. Видеозапись: Лекция [ Семинар]

  • Задачи инкрементного и онлайнового обучения. Оценивание инкрементного обучения. Кривые обучения.
  • Ленивое обучение (метрические и непараметрические методы). Онлайновый отбор эталонных объектов.
  • Онлайновый наивный байесовский классификатор.
  • Онлайновый градиентный спуск OGD. Алгоритм Perceptron. Алгоритм Passive-Aggressive.
  • Инкрементные решающие деревья ID5R.
  • Рекуррентный метод наименьших квадратов RLS. Формула Шермана-Моррисона.
  • Задача прогнозирования временных рядов. Эконометрические временные ряды с трендом и сезонностью.
  • Экспоненциальное скользящее среднее. Модель Хольта. Модель Тейла-Вейджа. Модель Хольта-Уинтерса.
  • Адаптивная селективная модель. Адаптивная композиция моделей.
  • Онлайновое обучение ансамбля. Алгоритм Hedge, его свойства и интерпретация в задаче портфельного инвестирования.
  • Онлайновое глубокое обучение. Алгоритм Hedge BackProp.

Обучение с подкреплением

Презентация: (PDF, 1.9 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound).
  • Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
  • Постановка задачи в случае, когда агент влияет на среду. Ценность состояния среды. Ценность действия.
  • Жадные стратегии максимизации ценности. Уравнения оптимальности Беллмана.
  • Метод SARSA. Метод Q-обучения. Типизация методов на on-policy и off-policy.
  • Глубокое Q-обучение нейронной сети DQN на примере обучения играм Atari.
  • Градиентная оптимизация стратегии (policy gradient). Связь с максимизацией log-правдоподобия.
  • Модели актор-критик. Модели с непрерывным управлением.
  • Постановка задачи при моделировании среды. Типизация методов на model-free и model-based.
  • Контекстный многорукий бандит. Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
  • Оценивание новой стратегии по большим историческим данным, сформированным при старых стратегиях.

Активное обучение

Презентация: (PDF, 2.3 МБ) — обновление 26.04.2024. Видеозапись: Лекция Семинар

  • Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов. Приложения активного обучения.
  • Почему активное обучение быстрее пассивного. Оценивание качества активного обучения. Кривые обучения.
  • Сэмплирование по неуверенности.
  • Сэмплирование по несогласию в комитете. Сокращение пространства решений.
  • Сэмплирование по ожидаемому изменению модели.
  • Сэмплирование по ожидаемому сокращению ошибки.
  • Синтез объектов методами безградиентной оптимизации. Метод Нелдера-Мида.
  • Синтез объектов по критерию сокращения дисперсии.
  • Взвешивание по плотности.
  • Введение изучающих действий в стратегию активного обучении. Алгоритмы ε-active и EG-active.
  • Использование активного обучения в краудсорсинге. Согласование оценок аннотаторов. Назначение заданий аннотаторам.

Интерпретируемость и объяснимость

Презентация: (PDF, 3.8 МБ) — обновление 04.05.2024.

  • Интерпретируемость и объяснимость — цели, задачи, основные понятия
  • Интерпретируемые модели машинного обучения
  • Оценки значимости признаков в линейной регрессии
  • Графики частичной зависимости (Partial Dependence Plot, PDP)
  • Графики индивидуальных условных зависимостей (ICE)
  • Перестановочные оценки значимости признаков
  • Вектор Шепли (из теории кооперативных игр), его свойства, способы оценивания, применение в линейной регрессии
  • Суррогатное моделирование в окрестности объекта.
  • Метод LIME (Local Interpretable Model-agnostic Explanations)
  • Метод якорей (Anchors)
  • Метод SHAP (SHapley Additive exPlanations)
  • Метод Shapley Kernel
  • Метод SAGE (Shapley Additive Global importancE)
  • Вектор Шепли для объектов, метод Gradient Shapley
  • Контрфактическое объяснение, метод поиска контрфактов (Counterfactual explanations)

Заключительная лекция

Презентация: (PDF, 3.9 МБ) — обновление 4.05.2021. Видеозапись: Лекция

Обзор курса. Постановки оптимизационных задач в машинном обучении.

См. также

Литература

  1. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer, 2014. — 739 p.
  2. Bishop C. M. Pattern Recognition and Machine Learning. — Springer, 2006. — 738 p.
  3. Мерков А. Б. Распознавание образов. Введение в методы статистического обучения. 2011. 256 с.
  4. Мерков А. Б. Распознавание образов. Построение и обучение вероятностных моделей. 2014. 238 с.
  5. Коэльо Л.П., Ричарт В. Построение систем машинного обучения на языке Python. 2016. 302 с.

Список подстраниц

Машинное обучение (курс лекций, К.В.Воронцов)/2009Машинное обучение (курс лекций, К.В.Воронцов)/ToDoМашинное обучение (курс лекций, К.В.Воронцов)/Вопросы
Машинное обучение (курс лекций, К.В.Воронцов)/Семестровый курсМашинное обучение (курс лекций, К.В.Воронцов)/Форма отчета
Личные инструменты