Математические методы прогнозирования (кафедра ВМиК МГУ)/Кафедральные курсы

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(ссылки на практикум (317))
Строка 79: Строка 79:
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ КУРСЫ ДЛЯ 4-ГО КУРСА В ОСЕННЕМ СЕМЕСТРЕ -->
|<!-- ЗДЕСЬ ПЕРЕЧИСЛЯЮТСЯ КУРСЫ ДЛЯ 4-ГО КУРСА В ОСЕННЕМ СЕМЕСТРЕ -->
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[Прикладная алгебра (курс лекций, Ю.И. Журавлев, А.Г. Дьяконов)#ПРИКЛАДНАЯ АЛГЕБРА (часть 3)|Прикладная алгебра (часть 3)]]''', [[Участник:Sgur|С.И. Гуров]]
+
'''[[Прикладная алгебра (курс лекций, Ю.И. Журавлев, А.Г. Дьяконов)#ПРИКЛАДНАЯ АЛГЕБРА (часть 2)|Прикладная алгебра (часть 2)]]''', [[Участник:Sgur|С.И. Гуров]]
|Описание =
|Описание =
}}
}}
Строка 95: Строка 95:
}}
}}
{{Курс|Режим = {{{1}}}|Название =
{{Курс|Режим = {{{1}}}|Название =
-
'''[[Прикладная алгебра (курс лекций, Ю.И. Журавлев, А.Г. Дьяконов)#ПРИКЛАДНАЯ АЛГЕБРА (часть 2)|Прикладная алгебра (часть 2)]]''', В.К. Леонтьев.
+
'''[[Прикладная алгебра (курс лекций, Ю.И. Журавлев, А.Г. Дьяконов)#ПРИКЛАДНАЯ АЛГЕБРА (часть 3)|Прикладная алгебра (часть 3)]]''', В.К. Леонтьев.
|Описание =
|Описание =
}}
}}

Версия 10:03, 30 января 2013

 
   
Кафедральные курсы
Спецкурсы/спецсеминары
Новости
Расписание
Учебный план
Персональный состав
Материалы
Дипломные работы
Просеминар
  Тел. +7-495-939-4202
e-mail: Изображение:MMP_email.jpg
Ученый секретарь: Д.П. Ветров
Все контакты

Содержание

Третий курс

  • Математические методы распознавания образов: лекции (К.В. Воронцов), семинары (И.О. Толстихин)
    Изучаются методы классификации, регрессии, понижения размерности, кластеризации, как классические, так и новые, созданные за последние 10–15 лет. На материал данного курса опираются последующие кафедральные курсы.

Четвёртый курс

  • Математические основы теории прогнозирования, О.В. Сенько
    Обзорный курс для студентов 3-го потока ВМК МГУ по основным математическим методам решения задач машинного обучения. Задачей курса также является ознакомление с основными математическими теориями, которые используются при построении алгоритмов распознавания, такими как алгебра, математическая статистика, методы оптимизации, дискретная математика и др.

Пятый курс

  • Прикладной статистический анализ данных, К.В. Воронцов
    Обзорный курс, охватывающий дисперсионный, корреляционный, регрессионный анализ, анализ временных рядов и прогнозирование, анализ выживаемости, анализ панельных данных, выборочный анализ. Цели курса — связать математическую статистику с практическими приложениями в различных предметных областях, научить студентов правильно применять методы прикладной статистики.

Архив курсов


Личные инструменты