Практикум на ЭВМ (317)/2019 (весна)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Правила сдачи практикума)
Строка 1: Строка 1:
* Обязательный курс для студентов каф. [[ММП]] 3 курса, 6 семестр
* Обязательный курс для студентов каф. [[ММП]] 3 курса, 6 семестр
* Зачёт с оценкой
* Зачёт с оценкой
-
* Преподаватели: [[Участник:Kropotov|Д.А. Кропотов]], [[Участник:Arti_lehtonen| Артём Попов]], Виктор Януш
+
* Преподаватели: [[Участник:Kropotov|Д.А. Кропотов]], [[Участник:Arti_lehtonen| Артём Попов]], Виктор Януш, Павел Мазаев
* Занятия проходят в ауд. 606 по понедельникам, начало в 16 20. Первое занятие 11 февраля.
* Занятия проходят в ауд. 606 по понедельникам, начало в 16 20. Первое занятие 11 февраля.

Версия 16:05, 21 февраля 2019

  • Обязательный курс для студентов каф. ММП 3 курса, 6 семестр
  • Зачёт с оценкой
  • Преподаватели: Д.А. Кропотов, Артём Попов, Виктор Януш, Павел Мазаев
  • Занятия проходят в ауд. 606 по понедельникам, начало в 16 20. Первое занятие 11 февраля.

Анонимные отзывы по курсу можно оставлять здесь: ссылка на гугл-форму

Репозиторий со всеми материалами: ссылка

Содержание

Объявления

Пока нет...

Правила сдачи практикума

1. В рамках семестра предполагается пять практических заданий. Все задания сдаются в систему anytask, инвайт к курсу можно получить у преподавателя.

2. За каждое практическое задание можно получить до 10-ти баллов. Задание представляет собой jupyter notebook с некоторыми пропущенными шагами, которые необходимо выполнить. Формат сдачи задания — выполненный jupyter notebook. Срок выполнения каждого задания — 10 дней. За каждый день просрочки назначается штраф в 1 балл.

3. Предусмотрены бонусные активности: бонусные задачи, за которые можно получить дополнительные баллы.

4. Критерии итоговой оценки:

  • отлично — 40 баллов, 4 практических заданий сданы на оценку > 0
  • хорошо — 30 баллов, 3 практических задания сданы на оценку > 0
  • удовлетворительно — 20 баллов, 2 практических задания сданы на оценку > 0

5. Задания выполняются самостоятельно (если не оговорено обратное). Если задание выполнялось сообща, или использовались какие-либо сторонние коды и материалы, то об этом должно быть написано в отчете. В противном случае «похожие» решения считаются плагиатом и все задействованные студенты (в том числе те, у кого списали) будут сурово наказаны.

Материалы занятий

Дата Номер Тема Материалы Д/З
11 февраля Занятие 1 Автоматическое дифференцирование.

Решение задач на backpropagation.

решение задач
18 февраля Занятие 2 Методы оптимизации для нейросетей.

Регуляризация в нейросетях.

Инициализация для нейросетей.

видеолеция про стохастическую оптимизацию

обзор различных методов оптимизации нейросетей

статья Dropout

статья BatchNormalization

градиенты для BatchNormalization

статья про Glorot инициализацию

1 задание: Обучение полносвязной нейросети

Страницы прошлых лет

2018-2019 (осень)

2017-2018 (осень) , 2017-2018 (весна)

2016-2017

2015-2016

2014-2015

2013-2014

2012-2013

2011-2012

Личные инструменты