Машинное обучение (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(+глубокое обучение)
 
(198 промежуточных версий не показаны.)
Строка 1: Строка 1:
{{TOCright}}
{{TOCright}}
-
'''Теория обучения машин''' (machine learning, машинное обучение) находится на стыке [[Прикладная статистика|прикладной статистики]], [[Методы оптимизации|численных методов оптимизации]], [[Дискретный анализ|дискретного анализа]], и за последние 50 лет оформилась в самостоятельную математическую дисциплину. Методы [[Машинное обучение|машинного обучения]] составляют основу ещё более молодой дисциплины — ''[[Интеллектуальный анализ данных|интеллектуального анализа данных]]'' (data mining).
+
'''Машинное обучение''' (machine learning) находится на стыке [[Прикладная статистика|прикладной статистики]], [[Методы оптимизации|численных методов оптимизации]], [[Дискретный анализ|дискретного анализа]], и за последние 60 лет оформилась в самостоятельную математическую и инженерную дисциплину.
-
В курсе рассматриваются основные задачи обучения по прецедентам: [[классификация]], [[кластеризация]], [[регрессия]], [[понижение размерности]]. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Отдельные теоремы приводятся с доказательствами.
+
В курсе рассматриваются основные задачи обучения по прецедентам: [[классификация]], [[кластеризация]], [[регрессия]], [[понижение размерности]]. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Теоремы в основном приводятся без доказательств.
Все методы излагаются по единой схеме:
Все методы излагаются по единой схеме:
Строка 10: Строка 10:
* анализ достоинств, недостатков и границ применимости;
* анализ достоинств, недостатков и границ применимости;
* пути устранения недостатков;
* пути устранения недостатков;
-
* сравнение с другими методами.
+
* сравнение и взаимосвязи с другими методами.
* примеры прикладных задач.
* примеры прикладных задач.
-
Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом '''ACM/IEEE Computing Curricula 2001''' по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems).
+
На семинарах разбираются дополнительные примеры, аспекты практического применения, работа с данными, программирование, проведение вычислительных экспериментов.
 +
<!---
 +
Данный курс расширяет и углубляет набор тем, рекомендованный международным стандартом '''ACM/IEEE Computing Curricula 2001''' по дисциплине «Машинное обучение и нейронные сети» (machine learning and neural networks) в разделе «Интеллектуальные системы» (intelligent systems). --->
Курс читается
Курс читается
Строка 20: Строка 22:
* студентам [[Школа анализа данных Яндекса|Школы анализа данных Яндекса]] с 2009 года.
* студентам [[Школа анализа данных Яндекса|Школы анализа данных Яндекса]] с 2009 года.
-
На материал данного курса опираются последующие кафедральные курсы.
+
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей, языка программирования [[Python]]. Знание [[Математическая статистика|математической статистики]], [[Методы оптимизации|методов оптимизации]] желательно, но не обязательно.
-
На&nbsp;кафедре ММП ВМиК МГУ параллельно с данным курсом и в&nbsp;дополнение к&nbsp;нему читается спецкурс [[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]], посвящённый проблемам [[Переобучение|переобучения]] и оценивания [[Обобщающая способность|обобщающей способности]].
+
-
От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей. Знание [[Математическая статистика|математической статистики]], [[Методы оптимизации|методов оптимизации]] и какого-либо языка программирования желательно, но не обязательно.
+
<!---На материал данного курса опираются последующие кафедральные курсы.
-
 
+
На&nbsp;кафедре ММП ВМиК МГУ параллельно с данным курсом и в&nbsp;дополнение к&nbsp;нему читается спецкурс [[Теория надёжности обучения по прецедентам (курс лекций, К. В. Воронцов)|Теория надёжности обучения по прецедентам]], посвящённый проблемам [[Переобучение|переобучения]] и оценивания [[Обобщающая способность|обобщающей способности]]. --->
-
Ниже представлена расширенная программа — в полном объёме она занимает больше, чем могут вместить в себя два семестра.
+
-
Каждый параграф приблизительно соответствует одной лекции.
+
''Курсивом'' выделен дополнительный материал, который может разбираться на семинарах.
''Курсивом'' выделен дополнительный материал, который может разбираться на семинарах.
-
=== Замечания для студентов ===
+
'''Замечания для студентов'''
-
* Видеолекции [https://yandexdataschool.ru/edu-process/courses/machine-learning ШАД Яндекс].
+
* [https://github.com/andriygav/MachineLearningSeminars/blob/master/README.rst Ссылка на семинары для студентов МФТИ]
 +
* [https://ya-r.ru/2020/05/07/vorontsov-kurs-mashinnoe-obuchenie-2019-shkola-analiza-dannyh/ Видеолекции ШАД Яндекс]. {{Важно|Обновлено: 2019 год}}
* [https://www.coursera.org/learn/vvedenie-mashinnoe-obuchenie «Введение в машинное обучение» на Курсэре] содержит примерно втрое меньше материала, чем в годовом курсе, представленном на этой странице. Там очень многое упрощено, спрятано, пропущено. Действительно введение.
* [https://www.coursera.org/learn/vvedenie-mashinnoe-obuchenie «Введение в машинное обучение» на Курсэре] содержит примерно втрое меньше материала, чем в годовом курсе, представленном на этой странице. Там очень многое упрощено, спрятано, пропущено. Действительно введение.
* На подстранице имеется перечень [[Машинное обучение (курс лекций, К.В.Воронцов)/Вопросы|вопросов к устному экзамену]]. Очень помогает при подготовке к устному экзамену!
* На подстранице имеется перечень [[Машинное обучение (курс лекций, К.В.Воронцов)/Вопросы|вопросов к устному экзамену]]. Очень помогает при подготовке к устному экзамену!
* О найденных ошибках и опечатках [[Служебная:EmailUser/Vokov|сообщайте мне]]. —&nbsp;''[[Участник:Vokov|К.В.Воронцов]] 18:24, 19 января 2009 (MSK)''
* О найденных ошибках и опечатках [[Служебная:EmailUser/Vokov|сообщайте мне]]. —&nbsp;''[[Участник:Vokov|К.В.Воронцов]] 18:24, 19 января 2009 (MSK)''
* Материал, который есть в pdf-тексте, но не рассказывался на лекциях, обычно не входит в программу экзамена.
* Материал, который есть в pdf-тексте, но не рассказывался на лекциях, обычно не входит в программу экзамена.
 +
* Короткая ссылка на эту страницу: [https://bit.ly/ML-Vorontsov bit.ly/ML-Vorontsov].
-
= Первый семестр =
+
= Семестр 1. Математические основы машинного обучения =
'''Текст лекций:''' [[Media:Voron-ML-1.pdf|(PDF,&nbsp;3&nbsp;МБ)]] {{важно|— обновление 4.10.2011}}.
'''Текст лекций:''' [[Media:Voron-ML-1.pdf|(PDF,&nbsp;3&nbsp;МБ)]] {{важно|— обновление 4.10.2011}}.
== Основные понятия и примеры прикладных задач ==
== Основные понятия и примеры прикладных задач ==
-
Презентация: [[Media:Voron-ML-Intro-slides.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 09.02.2016}}.
+
Презентация: [[Media:Voron-ML-Intro-slides.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 13.09.2024}}.
-
 
+
Видеозапись: [https://youtu.be/uLduOFhyCUw?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy&t=1437 Лекция] [https://youtu.be/bJVI5AIback Семинар]
* Постановка задач обучения по прецедентам. Объекты и признаки. Типы шкал: бинарные, номинальные, порядковые, количественные.
* Постановка задач обучения по прецедентам. Объекты и признаки. Типы шкал: бинарные, номинальные, порядковые, количественные.
* Типы задач: [[классификация]], [[регрессия]], [[прогнозирование]], [[ранжирование]].
* Типы задач: [[классификация]], [[регрессия]], [[прогнозирование]], [[ранжирование]].
Строка 49: Строка 50:
* Линейные модели регрессии и классификации. Метод наименьших квадратов. Полиномиальная регрессия.
* Линейные модели регрессии и классификации. Метод наименьших квадратов. Полиномиальная регрессия.
* Примеры прикладных задач.
* Примеры прикладных задач.
 +
* Задачи со сложно структурированными данными. Преобразование и генерация признаков.
* Методика экспериментального исследования и сравнения алгоритмов на модельных и реальных данных.
* Методика экспериментального исследования и сравнения алгоритмов на модельных и реальных данных.
* Конкурсы по анализу данных [http://kaggle.com kaggle.com]. [[Полигон алгоритмов классификации]].
* Конкурсы по анализу данных [http://kaggle.com kaggle.com]. [[Полигон алгоритмов классификации]].
* [[CRISP-DM]] — межотраслевой стандарт ведения проектов [[Data Mining | интеллектуального анализа данных]].
* [[CRISP-DM]] — межотраслевой стандарт ведения проектов [[Data Mining | интеллектуального анализа данных]].
-
== Метрические методы классификации и регрессии ==
+
== Линейный классификатор и стохастический градиент ==
-
Презентация: [[Media:Voron-ML-Metric-slides.pdf|(PDF,&nbsp;3,0&nbsp;МБ)]] {{важно|— обновление 21.02.2017}}.
+
Презентация: [[Media:Voron-ML-Lin-SG.pdf|(PDF,&nbsp;1,2&nbsp;МБ)]] {{важно|— обновление 13.09.2024}}.
-
 
+
Видеозапись: [https://youtu.be/YaJ-QfSHl3o?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy&t=37 Лекция] [https://youtu.be/-4pPz5kX4XQ Семинар]
-
* Гипотезы компактности и непрерывности.
+
-
* Обобщённый [[метрический классификатор]].
+
-
* [[Метод ближайших соседей]] ''k''NN и его обобщения. Подбор числа ''k'' по критерию скользящего контроля.
+
-
* [[Метод окна Парзена]] с постоянной и переменной шириной окна.
+
-
* [[Метод потенциальных функций]] и его связь с линейной моделью классификации.
+
-
* Непараметрическая регрессия. Локально взвешенный [[метод наименьших квадратов]]. [[Ядерное сглаживание]].
+
-
* [[Оценка Надарая-Ватсона]] с постоянной и переменной шириной окна. Выбор функции ядра.
+
-
* Задача отсева выбросов. Робастная непараметрическая регрессия. [[Алгоритм LOWESS]].
+
-
* Задача отбора эталонов. Понятие [[отступ]]а. [[Алгоритм СТОЛП]].
+
-
* Задача отбора признаков. Жадный алгоритм построения метрики.
+
-
<!--
+
-
* ''[[Функция конкурентного сходства]], [[алгоритм FRiS-СТОЛП]]''.
+
-
* ''[[Функционал полного скользящего контроля]], формула быстрого вычисления для метода 1NN. [[Профиль компактности]]. Функция вклада объекта. Отбор эталонных объектов на основе минимизации функционала полного скользящего контроля. Эффективные структуры данных для быстрого поиска ближайших объектов в прямых и обратных окрестностях — [[метрические деревья]].''
+
-
* ''Концепция вывода на основе прецедентов ([[CBR]]).''
+
-
-->
+
-
 
+
-
== Логические методы классификации ==
+
-
Текст лекций: [[Media:Voron-ML-Logic.pdf|(PDF,&nbsp;625&nbsp;КБ)]].<br/>
+
-
Презентация: [[Media:Voron-ML-Logic-slides.pdf|(PDF,&nbsp;1.8&nbsp;МБ)]] {{важно| — обновление 21.02.2017}}.
+
-
 
+
-
* Понятие [[логическая закономерность|логической закономерности]].
+
-
* Параметрические семейства закономерностей: конъюнкции пороговых правил, синдромные правила, шары, гиперплоскости.
+
-
* Переборные алгоритмы синтеза конъюнкций: [[стохастический локальный поиск]], [[стабилизация]], [[редукция]].
+
-
* Двухкритериальный отбор информативных закономерностей, парето-оптимальный фронт в (p,n)-пространстве.
+
-
* [[Решающее дерево]]. Жадная нисходящая стратегия «разделяй и властвуй». [[Алгоритм ID3]]. Недостатки жадной стратегии и способы их устранения. Проблема переобучения.
+
-
* Вывод критериев ветвления. Мера нечистоты (impurity) распределения. Энтропийный критерий, критерий Джини.
+
-
* [[Редукция решающих деревьев]]: [[предредукция]] и [[постредукция]]. [[Алгоритм C4.5]].
+
-
* Деревья регрессии. [[Алгоритм CART]].
+
-
* [[Небрежные решающие деревья]] (oblivious decision tree).
+
-
* Решающий лес. [[Случайный лес]] (Random Forest).
+
-
 
+
-
'''Факультатив'''
+
-
* Статистический критерий информативности, [[точный тест Фишера]]. Сравнение областей эвристических и статистических закономерностей. Асимптотическая эквивалентность статистического и энтропийного критерия информативности. Разнообразие критериев информативности в (p,n)-пространстве.
+
-
* Решающий пень. [[Бинаризация признаков]]. Алгоритм разбиения области значений признака на информативные зоны.
+
-
* [[Решающий список]]. Жадный алгоритм синтеза списка.
+
-
* Преобразование решающего дерева в решающий список.
+
-
 
+
-
== Градиентные методы обучения ==
+
-
 
+
-
Презентация: [[Media:Voron-ML-Lin-SG.pdf|(PDF,&nbsp;0,9&nbsp;МБ)]] {{важно|— обновление 03.03.2017}}.
+
* [[Линейный классификатор]], модель МакКаллока-Питтса, непрерывные аппроксимации пороговой функции потерь.
* [[Линейный классификатор]], модель МакКаллока-Питтса, непрерывные аппроксимации пороговой функции потерь.
 +
* Бинарная классификация и многоклассовая классификация.
* [[Метод стохастического градиента]] SG.
* [[Метод стохастического градиента]] SG.
 +
<!--
* [[Метод стохастического среднего градиента]] SAG.
* [[Метод стохастического среднего градиента]] SAG.
* Частные случаи: [[адаптивный линейный элемент]] ADALINE, [[перcептрон Розенблатта]], [[правило Хэбба]].
* Частные случаи: [[адаптивный линейный элемент]] ADALINE, [[перcептрон Розенблатта]], [[правило Хэбба]].
* [[Теорема Новикова]] о сходимости. Доказательство теоремы Новикова
* [[Теорема Новикова]] о сходимости. Доказательство теоремы Новикова
-
* Эвристики: инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов.
+
-->
 +
* Эвристики: инерция и ускоренный градиент, инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов.
* Проблема мультиколлинеарности и переобучения, регуляризация или [[редукция весов]] (weight decay).
* Проблема мультиколлинеарности и переобучения, регуляризация или [[редукция весов]] (weight decay).
* Вероятностная постановка задачи классификации. Принцип максимума правдоподобия.
* Вероятностная постановка задачи классификации. Принцип максимума правдоподобия.
* Вероятностная интерпретация регуляризации, совместное правдоподобие данных и модели. Принцип максимума апостериорной вероятности.
* Вероятностная интерпретация регуляризации, совместное правдоподобие данных и модели. Принцип максимума апостериорной вероятности.
* Гауссовский и лапласовский регуляризаторы.
* Гауссовский и лапласовский регуляризаторы.
-
* [[Логистическая регрессия]]. Принцип максимума правдоподобия и логарифмическая функция потерь. [[Метод стохастического градиента]] для логарифмической функции потерь. Сглаженное правило Хэбба. Многоклассовая логистическая регрессия. Регуляризованная логистическая регрессия. [[Калибровка Платта]].
+
* [[Логистическая регрессия]]. Принцип максимума правдоподобия и логарифмическая функция потерь. [[Метод стохастического градиента]] для логарифмической функции потерь. Многоклассовая логистическая регрессия. Регуляризованная логистическая регрессия.
<!--
<!--
 +
* [[Калибровка Платта]].
* Функции потерь, зависящие от цены ошибок. [[Кривая ошибок]] (ROC curve). Алгоритм эффективного построения ROC-кривой.
* Функции потерь, зависящие от цены ошибок. [[Кривая ошибок]] (ROC curve). Алгоритм эффективного построения ROC-кривой.
* Градиентный метод максимизации AUC.
* Градиентный метод максимизации AUC.
 +
-->
 +
 +
== Нейронные сети: градиентные методы оптимизации ==
 +
Презентация: [[Media:Voron-ML-ANN-slides.pdf|(PDF,&nbsp;1,5&nbsp;МБ)]] {{важно|— обновление 20.09.2024}}.
 +
Видеозапись: [https://youtu.be/g5B-OiSb9EQ?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/6AyE5bzFWQs Семинар]
 +
* Биологический нейрон, [[модель МакКаллока-Питтса]] как [[линейный классификатор]]. Функции активации.
 +
* Проблема полноты. [[Задача исключающего или]]. Полнота двухслойных сетей в пространстве булевых функций.
 +
<!--* ''Теоремы Колмогорова, Стоуна, Горбаня (без доказательства).''-->
 +
* [[Алгоритм обратного распространения ошибок]].
 +
* Быстрые методы стохастического градиента: Поляка, Нестерова, AdaGrad, RMSProp, AdaDelta, Adam, Nadam, [[диагональный метод Левенберга-Марквардта]].
 +
* Проблема взрыва градиента и эвристика gradient clipping.
 +
* Метод случайных отключений нейронов (Dropout). Интерпретации Dropout. Обратный Dropout и L2-регуляризация.
 +
* Функции активации ReLU и PReLU. Проблема [[паралич сети|«паралича» сети]].
 +
* Эвристики для формирования начального приближения. Метод послойной настройки сети.
 +
* Подбор структуры сети: методы постепенного усложнения сети, [[оптимальное прореживание нейронных сетей]] (optimal brain damage).
 +
 +
== Метрические методы классификации и регрессии ==
 +
Презентация: [[Media:Voron-ML-Metric-slides.pdf|(PDF,&nbsp;3,9&nbsp;МБ)]] {{важно|— обновление 03.10.2024}}.
 +
Видеозапись: [https://youtu.be/-HBRFLcEk0U?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/BlPOOpFhhQE Семинар]
 +
* Гипотезы компактности и непрерывности.
 +
* Обобщённый [[метрический классификатор]].
 +
* [[Метод ближайших соседей]] ''k''NN и его обобщения. Подбор числа ''k'' по критерию скользящего контроля.
 +
* [[Метод окна Парзена]] с постоянной и переменной шириной окна.
 +
* [[Метод потенциальных функций]] и его связь с линейной моделью классификации.
 +
* Задача отбора эталонов. [[Полный скользящий контроль]] (CCV), формула быстрого вычисления для метода 1NN. [[Профиль компактности]].
 +
* Отбор эталонных объектов на основе минимизации функционала полного скользящего контроля.
 +
* Непараметрическая регрессия. Локально взвешенный [[метод наименьших квадратов]]. [[Ядерное сглаживание]].
 +
* [[Оценка Надарая-Ватсона]] с постоянной и переменной шириной окна. Выбор функции ядра и ширины окна сглаживания.
 +
* Задача отсева выбросов. Робастная непараметрическая регрессия. [[Алгоритм LOWESS]].
 +
<!--
 +
* ''[[Функция конкурентного сходства]], [[алгоритм FRiS-СТОЛП]]''.
 +
* ''Эффективные структуры данных для быстрого поиска ближайших объектов в прямых и обратных окрестностях — [[метрические деревья]].''
 +
* ''Понятие [[отступ]]а. [[Алгоритм СТОЛП]].''
 +
* ''Задача отбора признаков. Жадный алгоритм построения метрики.''
 +
* ''Концепция вывода на основе прецедентов ([[CBR]]).''
-->
-->
== Метод опорных векторов ==
== Метод опорных векторов ==
-
Презентация: [[Media:Voron-ML-Lin-SVM.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 07.03.2017}}.
+
Презентация: [[Media:Voron-ML-Lin-SVM.pdf|(PDF,&nbsp;1,3&nbsp;МБ)]] {{важно|— обновление 3.10.2024}}.
 +
Видеозапись: [https://youtu.be/AjIM8f8XgM8?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy&t=34 Лекция] [https://youtu.be/Y--tUWQ5JaY Семинар]
* Оптимальная разделяющая гиперплоскость. Понятие [[зазор]]а между классами (margin).
* Оптимальная разделяющая гиперплоскость. Понятие [[зазор]]а между классами (margin).
* Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
* Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
Строка 128: Строка 130:
--->
--->
-
== Многомерная линейная регрессия ==
+
== Линейные модели регрессии ==
-
Презентация: [[Media:Voron-ML-regression-slides.pdf|(PDF,&nbsp;0,7&nbsp;MБ)]] {{важно|— обновление 14.03.2017}}.
+
Презентация: [[Media:Voron-ML-regression-slides.pdf|(PDF,&nbsp;1,1&nbsp;MБ)]] {{важно|— обновление 11.10.2024}}.
 +
Видеозапись: [https://youtu.be/23F9RRazGzQ?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy&t=10 Лекция] [https://youtu.be/t5imStVGC7Y Семинар]
* Задача регрессии, [[многомерная линейная регрессия]].
* Задача регрессии, [[многомерная линейная регрессия]].
* [[Метод наименьших квадратов]], его вероятностный смысл и геометрический смысл.
* [[Метод наименьших квадратов]], его вероятностный смысл и геометрический смысл.
Строка 139: Строка 142:
* Спектральный подход к решению задачи наименьших квадратов.
* Спектральный подход к решению задачи наименьших квадратов.
* Задачи и методы низкоранговых матричных разложений.
* Задачи и методы низкоранговых матричных разложений.
-
 
<!---
<!---
=== Шаговая регрессия ===
=== Шаговая регрессия ===
Строка 148: Строка 150:
== Нелинейная регрессия ==
== Нелинейная регрессия ==
-
Презентация: [[Media:Voron-ML-regress-non-slides.pdf|(PDF,&nbsp;0,7&nbsp;MБ)]] {{важно|— обновление 28.03.2017}}.
+
Презентация: [[Media:Voron-ML-regress-non-slides.pdf|(PDF,&nbsp;0,8&nbsp;MБ)]] {{важно|— обновление 24.10.2024}}.
 +
Видеозапись: [https://youtu.be/B1GSBTmZh9s?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/WhQT3J1PJfI Семинар]
* [[Метод Ньютона-Рафсона]], [[метод Ньютона-Гаусса]].
* [[Метод Ньютона-Рафсона]], [[метод Ньютона-Гаусса]].
* Обобщённая аддитивная модель (GAM): [[метод настройки с возвращениями]] (backfitting) Хасти-Тибширани.
* Обобщённая аддитивная модель (GAM): [[метод настройки с возвращениями]] (backfitting) Хасти-Тибширани.
Строка 155: Строка 158:
* Неквадратичные функции потерь. Метод наименьших модулей. Квантильная регрессия. Пример прикладной задачи: прогнозирование потребительского спроса.
* Неквадратичные функции потерь. Метод наименьших модулей. Квантильная регрессия. Пример прикладной задачи: прогнозирование потребительского спроса.
* Робастная регрессия, функции потерь с горизонтальными асимптотами.
* Робастная регрессия, функции потерь с горизонтальными асимптотами.
-
<!---
 
-
* [[Логистическая регрессия]]. Гипотеза экспоненциальности функций правдоподобия классов. Теорема о линейности байесовского оптимального классификатора. Оценивание апостериорных вероятностей классов с помощью сигмоидной функции активации.
 
-
--->
 
-
== Критерии выбора моделей и методы отбора признаков ==
+
== Качество классификации и отбор признаков ==
Текст лекций: [[Media:Voron-ML-Modeling.pdf|(PDF,&nbsp;330&nbsp;КБ)]].<br/>
Текст лекций: [[Media:Voron-ML-Modeling.pdf|(PDF,&nbsp;330&nbsp;КБ)]].<br/>
-
Презентация: [[Media:Voron-ML-Modeling-slides.pdf|(PDF,&nbsp;1,0&nbsp;МБ)]] {{важно|— обновление 05.03.2015}}.<br/>
+
Презентация: [[Media:Voron-ML-Quality-slides.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 24.10.2024}}.
-
Презентация: [[Media:Voron-ML-Quality-slides.pdf|(PDF,&nbsp;1,3&nbsp;МБ)]] {{важно|— обновление 28.03.2017}}.
+
Видеозапись: [https://youtu.be/AMcg9YBseSI?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/fdb_cmG6hl8 Семинар]
-
 
+
* Критерии качества классификации: чувствительность и специфичность, ROC-кривая и AUC, точность и полнота, AUC-PR.
* Критерии качества классификации: чувствительность и специфичность, ROC-кривая и AUC, точность и полнота, AUC-PR.
* Внутренние и [[внешние критерии]]. Эмпирические и аналитические критерии.
* Внутренние и [[внешние критерии]]. Эмпирические и аналитические критерии.
* [[Скользящий контроль]], разновидности эмпирических оценок скользящего контроля. [[Критерий непротиворечивости]].
* [[Скользящий контроль]], разновидности эмпирических оценок скользящего контроля. [[Критерий непротиворечивости]].
* Разновидности аналитических оценок. [[Регуляризация]]. [[Критерий Акаике]] (AIC). [[Байесовский информационный критерий]] (BIC). Оценка Вапника-Червоненкиса.
* Разновидности аналитических оценок. [[Регуляризация]]. [[Критерий Акаике]] (AIC). [[Байесовский информационный критерий]] (BIC). Оценка Вапника-Червоненкиса.
-
* ''Статистические критерии: [[коэффициент детерминации]], [[критерий Фишера]], [[анализ регрессионных остатков]].''
 
-
* ''Агрегированные и многоступенчатые критерии''.
 
* Сложность задачи [[отбор признаков|отбора признаков]]. [[Полный перебор]].
* Сложность задачи [[отбор признаков|отбора признаков]]. [[Полный перебор]].
* [[Метод добавления и удаления]], шаговая регрессия.
* [[Метод добавления и удаления]], шаговая регрессия.
Строка 177: Строка 174:
* [[Случайный поиск]] и [[Случайный поиск с адаптацией]] (СПА).
* [[Случайный поиск]] и [[Случайный поиск с адаптацией]] (СПА).
<!---
<!---
 +
* ''Агрегированные и многоступенчатые критерии''.
 +
* ''Статистические критерии: [[коэффициент детерминации]], [[критерий Фишера]], [[анализ регрессионных остатков]].''
== Теория обобщающей способности ==
== Теория обобщающей способности ==
* [[Теория Вапника-Червоненкиса]]. Функционал равномерного отклонения частот ошибок. [[Функция роста]], [[ёмкость]] семейства алгоритмов. [[Структурная минимизация риска]].
* [[Теория Вапника-Червоненкиса]]. Функционал равномерного отклонения частот ошибок. [[Функция роста]], [[ёмкость]] семейства алгоритмов. [[Структурная минимизация риска]].
Строка 184: Строка 183:
--->
--->
-
== Прогнозирование временных рядов ==
+
== Логические методы классификации ==
-
Презентация: [[Media:Voron-ML-forecasting-slides.pdf|(PDF,&nbsp;0,9&nbsp;)]] {{важно|— обновление 27.04.2017}}.
+
Текст лекций: [[Media:Voron-ML-Logic.pdf|(PDF,&nbsp;625&nbsp;КБ)]].<br/>
-
* Задача прогнозирования временных рядов. Примеры приложений.
+
Презентация: [[Media:Voron-ML-Logic-slides.pdf|(PDF,&nbsp;1.3&nbsp;МБ)]] {{важно| — обновление 03.11.2024}}.
-
* [[Экспоненциальное сглаживание|Экспоненциальное скользящее среднее]]. [[Модель Хольта]]. [[Модель Тейла-Вейджа]]. [[Модель Хольта-Уинтерса]].
+
Видеозапись: [https://www.youtube.com/watch?v=M1z7d1ksbA8&list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] <!--[https://youtu.be/OP2rsn478Fk 2020]-->
-
* Адаптивная авторегрессионная модель.
+
[https://youtu.be/Ap55F1IoTfk Семинар]
-
* [[Следящий контрольный сигнал]]. [[Модель Тригга-Лича]].
+
* [[Решающее дерево]]. Жадная нисходящая стратегия «разделяй и властвуй». [[Алгоритм ID3]]. Недостатки жадной стратегии и способы их устранения. Проблема переобучения.
-
* Адаптивная селективная модель. Адаптивная композиция моделей.
+
* Вывод критериев ветвления. Мера нечистоты (impurity) распределения. Энтропийный критерий, критерий Джини.
-
* Локальная адаптация весов с регуляризацией.
+
* [[Редукция решающих деревьев]]: [[предредукция]] и [[постредукция]]. [[Алгоритм C4.5]].
 +
* Деревья регрессии. [[Алгоритм CART]].
 +
* Понятие [[логическая закономерность|логической закономерности]].
 +
* Параметрические семейства закономерностей: конъюнкции пороговых правил, синдромные правила, шары, гиперплоскости.
 +
* Преобразование решающего дерева в покрывающий набор конъюнкций.
 +
* Переборные алгоритмы синтеза конъюнкций: [[стохастический локальный поиск]], [[стабилизация]], [[редукция]].
 +
* Двухкритериальный отбор информативных закономерностей, парето-оптимальный фронт в (p,n)-пространстве.
 +
* Статистический критерий информативности, [[точный тест Фишера]]. Сравнение областей эвристических и статистических закономерностей. Разнообразие критериев информативности в (p,n)-пространстве.
 +
* [[Решающий список]] (decision list). Жадный алгоритм синтеза списка.
 +
* [[Небрежные решающие деревья]] (oblivious decision tree).
 +
* Решающий пень (decision stump). [[Бинаризация признаков]]. Алгоритм разбиения области значений признака на информативные зоны.
 +
<!---
 +
'''Факультатив'''
 +
* Асимптотическая эквивалентность статистического и энтропийного критерия информативности.
 +
--->
-
== Байесовская теория классификации ==
+
== Линейные ансамбли ==
-
Презентация: [[Media:Voron-ML-Bayes1-slides.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 27.04.2017}}.
+
Текст лекций: [[Media:Voron-ML-Compositions.pdf|(PDF,&nbsp;1&nbsp;MБ)]].<br/>
 +
Презентация: [[Media:Voron-ML-Compositions1-slides.pdf|(PDF,&nbsp;1.5&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
 +
Видеозапись: [https://youtu.be/96xMfQ7ZnGc?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/ZS82juA9098 Семинар]
 +
* Основные понятия: [[базовый алгоритм]], [[корректирующая операция]].
 +
* [[Простое голосование]] (комитет большинства).
 +
* Стохастические методы: [[бэггинг]] и [[метод случайных подпространств]].
 +
* [[Случайный лес]] (Random Forest).
 +
* [[Взвешенное голосование]]. Преобразование простого голосования во взвешенное.
 +
* [[Алгоритм AdaBoost]]. Экспоненциальная аппроксимация пороговой функции потерь. Процесс последовательного обучения базовых алгоритмов. Теорема о сходимости [[бустинг]]а. Идентификация нетипичных объектов (выбросов).
 +
* Теоретические обоснования. Обобщающая способность бустинга.
 +
* Базовые алгоритмы в бустинге. Решающие пни.
 +
* Сравнение бэггинга и бустинга.
 +
* [[Алгоритм ComBoost]]. Обобщение на большое число классов.
-
* Принцип максимума апостериорной вероятности. Теорема об оптимальности байесовского классификатора.
+
== Продвинутые методы ансамблирования ==
-
* [[Оценивание плотности распределения]]: три основных подхода.
+
Презентация: [[Media:Voron-ML-Compositions-slides2.pdf|(PDF,&nbsp;1.5&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
-
* [[Наивный байесовский классификатор]].
+
Видеозапись: [https://youtu.be/IG7XySody7w?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/JaxB8PdbeUw Семинар]
 +
* Виды ансамблей. Теоретические обоснования. Анализ смещения и разброса для простого голосования.
 +
* [[Градиентный бустинг]]. Стохастический градиентный бустинг.
 +
* Варианты бустинга: регрессия, [[Алгоритм AnyBoost]], [[GentleBoost]], [[LogitBoost]], [[BrownBoost]], и другие.
 +
* [[Алгоритм XGBoost]].
 +
* [[Алгоритм CatBoost]]. Обработка категориальных признаков.
 +
* [[Стэкинг]]. Линейный стэкинг, взвешенный по признакам.
 +
* [[Смесь алгоритмов]] (квазилинейная композиция), [[область компетентности]], примеры функций компетентности.
 +
* Выпуклые функции потерь. Методы построения смесей: последовательный и иерархический.
 +
* Построение смеси алгоритмов с помощью EM-подобного алгоритма.
 +
<!---
 +
* ''Нелинейная монотонная корректирующая операция. Случай классификации. Случай регрессии. Задача монотонизации выборки, изотонная регрессия.''
 +
=== Бустинг алгоритмов ранжирования ===
 +
* Задача ранжирования. Примеры: ранжирование результатов текстового поиска, задача [[Netflix]].
 +
* Функционал качества — число дефектных пар.
 +
* Бустинг алгоритмов ранжирования — аналоги AdaBoost и AnyBoost.
 +
* Двудольная задача. Сведение попарного функционала качества к поточечному.
 +
=== Взвешенное голосование логических закономерностей ===
 +
* [[Решающий лес]] и бустинг над решающими деревьями. ''[[Алгоритм TreeNet]].''
 +
* ''Методы синтеза конъюнктивных закономерностей. Псевдокод: [[алгоритм КОРА]], [[алгоритм ТЭМП]].''
 +
* ''[[Чередующиеся решающие деревья]] (alternating decision tree).''
 +
=== Алгоритмы вычисления оценок ===
 +
* [[Принцип частичной прецедентности]]. Структура [[Алгоритмы вычисления оценок|Алгоритмов вычисления оценок]].
 +
* [[Тупиковые тесты]].
 +
* [[Тупиковые представительные наборы]].
 +
* Проблема оптимизации АВО. АВО как композиция метрических закономерностей.
 +
* Применение бустинга, ТЭМП и СПА для оптимизации АВО.
 +
--->
 +
 
 +
== Оценивание плотности и байесовская классификация ==
 +
Презентация: [[Media:Voron-Density-Bayes-slides.pdf|(PDF,&nbsp;1,8&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
 +
Видеозапись: [https://youtu.be/dujnHz0vHY8?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/M8A0Wu5iPwQ Семинар]
 +
<!---Видеозапись: [https://youtu.be/hv3a_XOKUXk Лекция] [https://youtu.be/M8A0Wu5iPwQ Семинар]--->
 +
<!---Видеозапись: [https://youtu.be/ly7v6W9-lB8 Лекция] [https://youtu.be/M8A0Wu5iPwQ Семинар]--->
 +
* Параметрическое оценивание плотности. [[Многомерное нормальное распределение]], геометрическая интерпретация.
 +
* Выборочные оценки параметров многомерного нормального распределения. Проблемы [[мультиколлинеарность|мультиколлинеарности]] и [[переобучение|переобучения]]. [[Регуляризация]] ковариационной матрицы.
* Непараметрическое оценивание плотности. [[Ядерная оценка плотности Парзена-Розенблатта]]. Одномерный и многомерный случаи.
* Непараметрическое оценивание плотности. [[Ядерная оценка плотности Парзена-Розенблатта]]. Одномерный и многомерный случаи.
-
* [[Метод парзеновского окна]]. Выбор функции ядра. Выбор ширины окна, переменная ширина окна.
+
* [[Смесь распределений]]. [[EM-алгоритм]] как метод простых итераций.
-
* Параметрическое оценивание плотности. [[Нормальный дискриминантный анализ]].
+
<!---
-
* [[Многомерное нормальное распределение]], геометрическая интерпретация. Выборочные оценки параметров многомерного нормального распределения.
+
* ''Матричное дифференцирование. Вывод оценок параметров многомерного нормального распределения.''
* ''Матричное дифференцирование. Вывод оценок параметров многомерного нормального распределения.''
-
* [[Квадратичный дискриминант]]. Вид разделяющей поверхности. [[Подстановочный алгоритм]], его недостатки и способы их устранения.
+
* Детали реализации EM-алгоритма. Критерий останова. Выбор начального приближения.
-
* [[Линейный дискриминант Фишера]]. ''Связь с [[метод наименьших квадратов|методом наименьших квадратов]].''
+
* Обобщённый EM-алгоритм. Стохастический EM-алгоритм.
-
* Проблемы [[мультиколлинеарность|мультиколлинеарности]] и [[переобучение|переобучения]]. [[Регуляризация]] ковариационной матрицы.
+
* Выбор числа компонентов смеси. Пошаговая стратегия. Иерархический EM-алгоритм.
-
* Параметрический наивный байесовский классификатор.
+
== Байесовская теория классификации ==
 +
Презентация: [[Media:Voron-ML-BTC-slides.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 27.11.2021}}.
 +
Видеозапись: [https://youtu.be/ly7v6W9-lB8 Лекция] [https://youtu.be/M8A0Wu5iPwQ Семинар]
 +
--->
 +
* Байесовская теория классификации. Оптимальный байесовский классификатор.
 +
* Генеративные и дискриминативные модели классификации.
 +
* Наивный байесовский классификатор. Линейный наивный байесовский классификатор в случае экспоненциального семейства распределений.
 +
* [[Метод парзеновского окна]]. Выбор функции ядра. Выбор ширины окна, переменная ширина окна.
 +
* [[Нормальный дискриминантный анализ]]. [[Квадратичный дискриминант]]. Вид разделяющей поверхности. [[Подстановочный алгоритм]], его недостатки и способы их устранения. [[Линейный дискриминант Фишера]].
 +
* Смесь многомерных нормальных распределений. [[Сеть радиальных базисных функций]] (RBF) и применение EM-алгоритма для её настройки. Сравнение RBF-сети и SVM с гауссовским ядром.
 +
<!---
 +
* Мультиномиальный наивный байесовский классификатор для классификации текстов.
 +
* ''Связь линейного дискриминанта Фишера с [[метод наименьших квадратов|методом наименьших квадратов]].''
* Жадное добавление признаков в линейном дискриминанте, ''[[метод редукции размерности]] Шурыгина.''
* Жадное добавление признаков в линейном дискриминанте, ''[[метод редукции размерности]] Шурыгина.''
* ''Робастное оценивание. Цензурирование выборки (отсев объектов-выбросов).''
* ''Робастное оценивание. Цензурирование выборки (отсев объектов-выбросов).''
-
 
+
--->
-
== Разделение смеси распределений ==
+
-
Презентация: [[Media:Voron-ML-Bayes2-slides.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 27.04.2017}}.
+
-
 
+
-
* [[Смесь распределений]].
+
-
* [[EM-алгоритм]]: основная идея, понятие скрытых переменных. ЕМ алгоритм как метод простых итераций для решения системы нелинейных уравнений.
+
-
* Детали реализации EM-алгоритма. Критерий останова. Выбор начального приближения.
+
-
* Выбор числа компонентов смеси. Пошаговая стратегия. Априорное распределение Дирихле.
+
-
* Обобщённый EM-алгоритм. Стохастический EM-алгоритм. Иерархический EM-алгоритм.
+
-
* Смесь многомерных нормальных распределений. [[Сеть радиальных базисных функций]] (RBF) и применение EM-алгоритма для её настройки.
+
-
* Сопоставление RBF-сети и SVM с гауссовским ядром.
+
-
* Задача кластеризации. [[EM-алгоритм]] и [[Алгоритм k средних]] (k-means).
+
-
* Задача частичного обучения.
+
== Кластеризация и частичное обучение ==
== Кластеризация и частичное обучение ==
-
Презентация: [[Media:Voron-ML-Clustering-slides.pdf|(PDF,&nbsp;1,7&nbsp;МБ)]] {{важно|— обновление 25.05.2017}}.
+
Презентация: [[Media:Voron-ML-Clustering-SSL-slides.pdf|(PDF,&nbsp;2,3&nbsp;МБ)]] {{важно|— обновление 04.05.2024}}.
-
<!--Презентация: [[Media:Voron-ML-SSL.pdf|(PDF,&nbsp;1.0&nbsp;МБ)]] {{важно| — обновление 28.10.2015}}.-->
+
Видеозапись: [https://youtu.be/Rm4rJiDFi2k?list=PLk4h7dmY2eYH8dtnVUD51XylWpFYDcPKy Лекция] [https://youtu.be/pobOLM1MVfc Семинар]
 +
<!--[https://youtu.be/VxedxFC5d2I 2020]-->
 +
 
* Постановка задачи [[кластеризация|кластеризации]]. Примеры прикладных задач. Типы кластерных структур.
* Постановка задачи [[кластеризация|кластеризации]]. Примеры прикладных задач. Типы кластерных структур.
* Постановка задачи Semisupervised Learning, примеры приложений.
* Постановка задачи Semisupervised Learning, примеры приложений.
-
* Оптимизационные постановки задач кластеризации и частичного обучения.
+
* Критерии качества кластеризации, коэффициент силуэта, BCubed-меры точности и полноты.
-
* [[Графовые алгоритмы кластеризации]]. Выделение связных компонент. [[Кратчайший незамкнутый путь]].
+
* [[Алгоритм k-средних]] и [[ЕМ-алгоритм]] для разделения гауссовской смеси.
-
* [[Алгоритм ФОРЭЛ]].
+
* [[Алгоритм DBSCAN]].
* [[Агломеративная кластеризация]], [[Алгоритм Ланса-Вильямса]] и его частные случаи.
* [[Агломеративная кластеризация]], [[Алгоритм Ланса-Вильямса]] и его частные случаи.
* Алгоритм построения [[дендрограмма|дендрограммы]]. Определение числа кластеров.
* Алгоритм построения [[дендрограмма|дендрограммы]]. Определение числа кластеров.
-
* Свойства сжатия/растяжения, монотонности и редуктивности. Псевдокод редуктивной версии алгоритма.
+
* Свойства сжатия/растяжения и монотонности.
* Простые эвристические методы частичного обучения: self-training, co-training, co-learning.
* Простые эвристические методы частичного обучения: self-training, co-training, co-learning.
* Трансдуктивный метод опорных векторов TSVM.
* Трансдуктивный метод опорных векторов TSVM.
* Алгоритм Expectation-Regularization на основе многоклассовой регуляризированной логистической регрессии.
* Алгоритм Expectation-Regularization на основе многоклассовой регуляризированной логистической регрессии.
-
 
+
<!--
-
<!--* ''Потоковые (субквадратичные) алгоритмы кластеризации.''
+
* [[Графовые алгоритмы кластеризации]]. Выделение связных компонент. [[Кратчайший незамкнутый путь]].
 +
* [[Алгоритм ФОРЭЛ]].
 +
* Свойства сжатия/растяжения, монотонности и редуктивности. Псевдокод редуктивной версии алгоритма.
 +
* ''Потоковые (субквадратичные) алгоритмы кластеризации.''
* [[Многомерное шкалирование]], примеры прикладных задач.
* [[Многомерное шкалирование]], примеры прикладных задач.
* Субквадратичный алгоритм, псевдокод. Минимизация функционала стресса методом Ньютона-Рафсона.
* Субквадратичный алгоритм, псевдокод. Минимизация функционала стресса методом Ньютона-Рафсона.
* Визуализация: [[карта сходства]], [[диаграмма Шепарда]].
* Визуализация: [[карта сходства]], [[диаграмма Шепарда]].
* Совмещение многомерного шкалирования и иерархической кластеризации.
* Совмещение многомерного шкалирования и иерархической кластеризации.
 +
* [[Алгоритм t-SNE]]
-->
-->
-
== Поиск ассоциативных правил ==
+
== Детекция аномалий и робастные методы ==
-
Презентация: [[Media:Voron-ML-AssocRules-slides.pdf|(PDF,&nbsp;1.1&nbsp;МБ)]] {{важно| — обновление 20.10.2015}}.
+
Презентация: [[Media:Voron-ML-outliers.pdf|(PDF,&nbsp;1.8&nbsp;МБ)]] {{важно| — обновление 04.05.2024}}.
-
* Понятие [[Ассоциативное правило|ассоциативного правила]] и его связь с понятием логической закономерности.
+
* Задачи выявления аномалий. Эвристические методы выявления аномалий. Алгоритм LOWESS.
-
* Примеры прикладных задач: [[анализ рыночных корзин]], выделение терминов и тематики текстов.
+
* Теория робастного обучения. Схема итерационного перевзвешивания объектов IRS.
-
* [[Алгоритм APriori]]. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
+
* Семейство робастных агрегирующих функций.
-
* [[Алгоритм FP-growth]]. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
+
* Итерационное перевзвешивание для произвольной агрегирующей функции. Алгоритм IR-ERM.
-
* Общее представление о динамических и иерархических методах поиска ассоциативных правил.
+
* Робастная регрессия. Робастная классификация. Робастная кластеризация.
 +
* Выявление аномалий с помощью одноклассового SVM.
 +
* Парадигмы обучения PU-Learning, One-Class Classification, Open-Set Recognition, Open-World Recognition.
-
= Второй семестр =
+
= Семестр 2. Прикладные модели машинного обучения =
 +
 
 +
== Глубокие нейронные сети ==
 +
Презентация: [[Media:Voron-ML-DeepLearning-slides.pdf|(PDF,&nbsp;4,1&nbsp;МБ)]] {{важно|— обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/x3TKdZi7Mo4 Лекция] [https://youtu.be/_zhKsIze8QU Семинар]
 +
 
 +
* Обоснования глубоких нейронных сетей: выразительные возможности, скорость сходимости при избыточной параметризации.
 +
* Свёрточные нейронные сети (CNN) для изображений. Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
 +
* ResNet: остаточная нейронная сеть (residual NN). Сквозные связи между слоями (skip connection).
 +
* Свёрточные сети для сигналов, текстов, графов, игр.
 +
* Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
 +
* Сети долгой кратковременной памяти (Long short-term memory, LSTM).
 +
* Рекуррентные сети Gated Recurrent Unit (GRU) и Simple Recurrent Unit (SRU).
 +
 
 +
== Нейронные сети с обучением без учителя ==
 +
Презентация: [[Media:Voron-ML-ANN-Unsupervised-slides.pdf|(PDF,&nbsp;2,3&nbsp;МБ)]] {{важно|— обновление 09.02.2024}}.
 +
Видеозапись: [https://youtu.be/wfbe2yaXAkI Лекция] [https://youtu.be/wCX-8AiYYzk Семинар]
-
== Нейронные сети ==
 
-
Презентация: [[Media:Voron-ML-NeuralNets-slides.pdf|(PDF,&nbsp;1,4&nbsp;МБ)]] {{важно|— обновление 13.10.2015}}.
 
-
* Биологический нейрон, [[модель МакКаллока-Питтса]] как [[линейный классификатор]]. Функции активации.
 
-
* Проблема полноты. [[Задача исключающего или]]. Полнота двухслойных сетей в пространстве булевых функций.
 
-
* ''Теоремы Колмогорова, Стоуна, Горбаня (без доказательства).''
 
-
* [[Алгоритм обратного распространения ошибок]].
 
-
* Эвристики: формирование начального приближения, ускорение сходимости, [[диагональный метод Левенберга-Марквардта]]. Проблема [[паралич сети|«паралича» сети]].
 
-
* Метод послойной настройки сети.
 
-
* Подбор структуры сети: методы постепенного усложнения сети, [[оптимальное прореживание нейронных сетей]] (optimal brain damage).
 
* [[Нейронная сеть Кохонена]]. [[Конкурентное обучение]], стратегии WTA и WTM.
* [[Нейронная сеть Кохонена]]. [[Конкурентное обучение]], стратегии WTA и WTM.
* [[Самоорганизующаяся карта Кохонена]]. Применение для визуального анализа данных. Искусство интерпретации карт Кохонена.
* [[Самоорганизующаяся карта Кохонена]]. Применение для визуального анализа данных. Искусство интерпретации карт Кохонена.
-
<!--* [[Сети встречного распространения]], их применение для кусочно-постоянной и гладкой аппроксимации функций.
+
* [[Автокодировщик]]. Линейный AE, SAE, DAE, CAE, RAE, VAE, AE для классификации, многослойный AE.
-
-->
+
* Пред-обучение нейронных сетей (pre-training).
 +
* Перенос обучения (transfer learning).
 +
* Многозадачное обучение (multi-task learning).
 +
* Самостоятельное обучение (self-supervised learning).
 +
* Дистилляция моделей или суррогатное моделирование.
 +
* Обучение с использованием привилегированной информации (learning using priveleged information, LUPI).
 +
* Генеративные состязательные сети (generative adversarial net, GAN).
-
== Нейронные сети глубокого обучения ==
+
== Векторные представления текстов и графов ==
-
Презентация: [[Media:Voron-ML-DeepLearning-slides.pdf|(PDF,&nbsp;3,4&nbsp;МБ)]] {{важно|— обновление 1.11.2017}}.
+
Презентация: [[Media:Voron-ML-Embeddings-slides.pdf|(PDF,&nbsp;1,6&nbsp;МБ)]] {{важно|— обновление 05.05.2024}}.
-
* Быстрые методы стохастического градиента: Поляка, Нестерова, AdaGrad, RMSProp, AdaDelta, Adam, Nadam.
+
Видеозапись: [https://youtu.be/QJK8PRfKD2g Лекция] [https://youtu.be/NtS9Dp4XhGE Семинар]
-
* Проблема взрыва градиента и эвристика gradient clipping
+
-
* Метод случайных отключений нейронов (Dropout). Интерпретации Dropout. Обратный Dropout и L2-регуляризация.
+
-
* Функции активации ReLU и PReLU.
+
-
* Свёрточные нейронные сети (CNN). Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
+
-
* Идея обобщения CNN на любые структурированные данные.
+
-
* Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
+
-
* Сети долгой кратковременной памяти (Long short-term memory, LSTM)
+
-
== Линейные композиции, бустинг ==
+
* Векторные представления текста. Гипотеза дистрибутивной семантики.
-
Текст лекций: [[Media:Voron-ML-Compositions.pdf|(PDF,&nbsp;1&nbsp;MБ)]].<br/>
+
* Модели CBOW и SGNS из программы [[word2vec]]. Иерархический SoftMax.
-
Презентация: [[Media:Voron-ML-Compositions-slides.pdf|(PDF,&nbsp;0.9&nbsp;МБ)]] {{важно|— обновление 08.09.2015}}.
+
* Модель [[FastText]].
-
* Основные понятия: [[базовый алгоритм]] ([[алгоритмический оператор]]), [[корректирующая операция]].
+
* Векторные представления графов.
-
* [[Взвешенное голосование]].
+
* [[Многомерное шкалирование]] (multidimensional scaling, MDS).
-
* [[Алгоритм AdaBoost]]. Экспоненциальная аппроксимация пороговой функции потерь. Процесс последовательного обучения базовых алгоритмов. Теорема о сходимости [[бустинг]]а.
+
* Векторное представление соседства (stochastic neighbor embedding, SNE и tSNE).
-
* Обобщающая способность бустинга.
+
* Матричные разложения (graph factorization).
-
* Базовые алгоритмы в бустинге. Решающие пни.
+
* Модели случайных блужданий [[DeepWalk]], [[node2vec]].
-
* ''Варианты бустинга: [[GentleBoost]], [[LogitBoost]], [[BrownBoost]], и другие.''
+
* Обобщённый автокодировщик на графах [[GraphEDM]].
-
* ''[[Алгоритм AnyBoost]]''.
+
* Представление о графовых нейронных сетях (graph neural network, GNN). Передача сообщений по графу (message passing).
-
* [[Градиентный бустинг]]. Стохастический градиентный бустинг.
+
-
* [[Простое голосование]] (комитет большинства). Алгоритм ComBoost. Идентификация нетипичных объектов (выбросов).
+
-
* Преобразование простого голосования во взвешенное.
+
-
* Обобщение на большое число классов.
+
-
* ''[[Решающий список]] (комитет старшинства). Алгоритм обучения. Стратегия выбора классов для базовых алгоритмов.''
+
-
== Эвристические, стохастические, нелинейные композиции ==
+
== Модели внимания и трансформеры ==
-
Презентация: [[Media:Voron-ML-Compositions-slides2.pdf|(PDF,&nbsp;0.9&nbsp;МБ)]] {{важно|— обновление 08.09.2015}}.
+
Презентация: [[Media:Voron-ML-Attention-slides.pdf|(PDF,&nbsp;1,1&nbsp;МБ)]] {{важно|— обновление 05.05.2024}}.
-
* Стохастические методы: [[бэггинг]] и [[метод случайных подпространств]].
+
Видеозапись: [https://youtu.be/KhMweP00S44 Лекция] [https://youtu.be/GfUadGOcwtc Семинар]
-
* Случайный лес. Анализ смещения и вариации для простого голосования.
+
 
-
* [[Смесь алгоритмов]] (квазилинейная композиция), [[область компетентности]], примеры функций компетентности.
+
* Задачи обработки и преобразования последовательностей (sequence to sequence).
-
* Выпуклые функции потерь. Методы построения смесей: последовательный и иерархический.
+
* Рекуррентная сеть с моделью внимания.
-
* Построение смеси алгоритмов с помощью EM-подобного алгоритма.
+
* Разновидности моделей внимания: многомерное, иерархическое, Query–Key–Value, внутреннее (self-attention).
-
* ''Нелинейная монотонная корректирующая операция. Случай классификации. Случай регрессии. Задача монотонизации выборки, изотонная регрессия.''
+
* Модели внимания на графах (Graph Attention Network). Задача классификации вершин графа.
 +
* Трансформеры. Особенности архитектуры кодировщика и декодировщка.
 +
* Критерии обучения и оценивание качества (предобучение). Модель BERT.
 +
<!-- * Эквивалентность MHSA и CNN-->
 +
* Прикладные задачи: машинный перевод, аннотирование изображений.
 +
* Модели внимания и трансформеры для текстов, изображений, графов.
 +
 
 +
== Тематическое моделирование ==
<!---
<!---
-
=== Метод комитетов ===
+
Текст лекций: [[Media:Voron-ML-TopicModels.pdf|(PDF,&nbsp;830&nbsp;КБ)]].<br/>
-
* Общее понятие: [[комитет]] системы ограничений. Комитеты большинства, простое и взвешенное голосование (''z,p''-комитеты).
+
Презентация 1: [[Media:Voron-ML-TopicModels-slides.pdf|(PDF,&nbsp;2.8&nbsp;МБ)]] {{важно| обновление 16.11.2015}}.
-
* Теоремы о существовании комитетного решения.
+
Презентация 2: [[Media:Voron-ML-TopicModels-slides-2.pdf|(PDF,&nbsp;6.1&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
-
* Сопоставление комитета линейных неравенств с нейронной сетью.
+
Семинар 15.11.2020: [[Media:Voron-ML-TopicModeling-seminar-slides.pdf|(PDF,&nbsp;3.8&nbsp;МБ)]]
-
* [[Максимальная совместная подсистема]], [[минимальный комитет]]. Теоремы об ''NP''-полноте задачи поиска минимального комитета.
+
-
* Алгоритм построения комитета, близкого к минимальному. Верхняя оценка числа членов комитета.
+
-
=== Бустинг алгоритмов ранжирования ===
+
-
* Задача ранжирования. Примеры: ранжирование результатов текстового поиска, задача [[Netflix]].
+
-
* Функционал качества число дефектных пар.
+
-
* Бустинг алгоритмов ранжирования — аналоги AdaBoost и AnyBoost.
+
-
* Двудольная задача. Сведение попарного функционала качества к поточечному.
+
-
=== Взвешенное голосование логических закономерностей ===
+
-
* Применение алгоритма бустинга [[AdaBoost]] к закономерностям. Критерий информативности в бустинге.
+
-
* [[Решающий лес]] и бустинг над решающими деревьями. ''[[Алгоритм TreeNet]].''
+
-
* ''Методы синтеза конъюнктивных закономерностей. Псевдокод: [[алгоритм КОРА]], [[алгоритм ТЭМП]].''
+
-
* Эвристики, обеспечивающие различность и полезность закономерностей. Построение Парето-оптимальных закономерностей. Выравнивание распределения отступов.
+
-
* ''[[Чередующиеся решающие деревья]] (alternating decision tree).''
+
-
* Примеры прикладных задач: кредитный скоринг, прогнозирование ухода клиентов.
+
-
=== Алгоритмы вычисления оценок ===
+
-
* [[Принцип частичной прецедентности]]. Структура [[Алгоритмы вычисления оценок|Алгоритмов вычисления оценок]].
+
-
* [[Тупиковые тесты]].
+
-
* [[Тупиковые представительные наборы]].
+
-
* Проблема оптимизации АВО. АВО как композиция метрических закономерностей.
+
-
* Применение бустинга, ТЭМП и СПА для оптимизации АВО.
+
--->
--->
 +
Презентация: [[Media:Voron-ML-TopicModeling-slides.pdf|(PDF,&nbsp;3.9&nbsp;МБ)]] {{важно| — обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/Eqm8-YqUzAc Лекция] [https://youtu.be/xxwMuxM4AEg Семинар]
 +
 +
* Задача [[тематическое моделирование|тематического моделирования]] коллекции текстовых документов. [[Метод максимума правдоподобия]].
 +
* Лемма о максимизации гладкой функции на симплексах (применение условий Каруша–Куна–Таккера).
 +
* [[Аддитивная регуляризация тематических моделей]]. Регуляризованный EM-алгоритм, теорема о стационарной точке. Элементарная интерпретация EM-алгоритма.
 +
* [[Вероятностный латентный семантический анализ]] PLSA. [[ЕМ-алгоритм]].
 +
* [[Латентное размещение Дирихле]] LDA. [[Метод максимума апостериорной вероятности]]. Сглаженная частотная оценка условной вероятности. Небайесовская интерпретация LDA.
 +
* Регуляризаторы разреживания, сглаживания, частичного обучения, декоррелирования.
 +
* Мультимодальная тематическая модель. Мультиязычная тематическая модель.
 +
* Регуляризаторы классификации и регрессии.
 +
* Модель битермов WNTM. Модель связанных документов. Иерархическая тематическая модель.
 +
* Внутренние и внешние критерии качества тематических моделей.
 +
 +
== Обучение ранжированию ==
 +
Презентация: [[Media:Voron-ML-Ranking-slides.pdf|(PDF,&nbsp;0,9&nbsp;МБ)]] {{важно|— обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/kQ5PeshAO1w Лекция] [https://youtu.be/cN5WoTRJYtY Семинар]
-
== Ранжирование ==
 
-
Презентация: [[Media:Voron-ML-Ranking-slides.pdf|(PDF,&nbsp;0,5&nbsp;МБ)]] {{важно|— обновление 14.10.2014}}.
 
* Постановка задачи [[Обучение ранжированию|обучения ранжированию]]. Примеры.
* Постановка задачи [[Обучение ранжированию|обучения ранжированию]]. Примеры.
-
* Признаки в задаче ранжирования поисковой выдачи: текстовые, ссылочные, кликовые. [[TF-IDF]]. [[PageRank]].
+
* Поточечные методы Ранговая регрессия. Ранговая классификация, OC-SVM.
 +
* Попарные методы: RankingSVM, RankNet, LambdaRank.
 +
* Списочные методы.
 +
* Признаки в задаче ранжирования поисковой выдачи: текстовые, ссылочные, кликовые. [[TF-IDF]], [[Okapi BM25]], [[PageRank]].
* Критерии качества ранжирования: Precision, MAP, AUC, DCG, NDCG, pFound.
* Критерии качества ранжирования: Precision, MAP, AUC, DCG, NDCG, pFound.
-
* Ранговая классификация, OC-SVM.
+
* Глубокая структурированная семантическая модель [[DSSM]] (Deep Structured Semantic Model).
-
* Попарный подход: RankingSVM, RankNet, LambdaRank.
+
== Рекомендательные системы ==
== Рекомендательные системы ==
-
Презентация: [[Media:Voron-ML-CF.pdf|(PDF,&nbsp;0.8&nbsp;МБ)]] {{важно| — обновление 13.11.2016}}.
+
Презентация: [[Media:Voron-ML-CF.pdf|(PDF,&nbsp;0.9&nbsp;МБ)]] {{важно| — обновление 05.05.2024}}.
-
* Задачи [[коллаборативная фильтрация|коллаборативной фильтрации]], [[транзакционные данные]] и матрица субъекты—объекты.
+
Видеозапись: [https://youtu.be/FW5UdtMwlpw Лекция] [https://youtu.be/Rge1_Bnr8JI Семинар]
-
* Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства субъектов и объектов.
+
 
-
* ''Латентные методы на основе [[би-кластеризация|би-кластеризации]]. [[Алгоритм Брегмана]].''
+
* Задачи [[коллаборативная фильтрация|коллаборативной фильтрации]], [[транзакционные данные]].
 +
* Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства.
 +
* Разреженная линейная модель (Sparse LInear Method, SLIM).
* Латентные методы на основе матричных разложений. [[Метод главных компонент]] для разреженных данных (LFM, Latent Factor Model). [[Метод стохастического градиента]].
* Латентные методы на основе матричных разложений. [[Метод главных компонент]] для разреженных данных (LFM, Latent Factor Model). [[Метод стохастического градиента]].
-
* Неотрицательные матричные разложения. Метод чередующихся наименьших квадратов ALS.
+
* Неотрицательные матричные разложения NNMF. Метод чередующихся наименьших квадратов ALS. [[Вероятностный латентный семантический анализ]] PLSA.
* Модель с учётом неявной информации (implicit feedback).
* Модель с учётом неявной информации (implicit feedback).
-
* Рекомендации с учётом дополнительных признаковых данных. Линейная и квадратичная регрессионные модели, [[libFM]].
+
* Автокодировщики для коллаборативной фильтрации.
 +
* Учёт дополнительных признаковых данных в матричных разложениях и автокодировщиках.
 +
* Линейная и квадратичная регрессионные модели, [[libFM]].
 +
* Гиперграфовая транзакционная тематическая модель для учёта дополнительных данных.
* Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).
* Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).
-
== Тематическое моделирование ==
+
== Поиск ассоциативных правил ==
-
Текст лекций: [[Media:Voron-ML-TopicModels.pdf|(PDF,&nbsp;830&nbsp;КБ)]].<br/>
+
Презентация: [[Media:Voron-ML-AssocRules-slides.pdf|(PDF,&nbsp;1.8&nbsp;МБ)]] {{важно| — обновление 05.05.2024}}.
 +
Видеозапись: [https://youtu.be/jKl2jFQVh94 Лекция] [https://youtu.be/WmJKfCl9P7Y Семинар]
 +
* Понятие [[Ассоциативное правило|ассоциативного правила]] и его связь с понятием логической закономерности.
 +
* Примеры прикладных задач: [[анализ рыночных корзин]], выделение терминов и тематики текстов.
 +
* [[Алгоритм APriori]]. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
 +
* [[Алгоритм FP-growth]]. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
 +
* Общее представление о динамических и иерархических методах поиска ассоциативных правил.
 +
* [[Алгоритм TopMine]] для поиска коллокаций и терминов в текстах.
<!---
<!---
-
Презентация 1: [[Media:Voron-ML-TopicModels-slides.pdf|(PDF,&nbsp;2.8&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
+
== Адаптивные методы прогнозирования ==
-
Презентация 2: [[Media:Voron-ML-TopicModels-slides-2.pdf|(PDF,&nbsp;6.1&nbsp;МБ)]] {{важно| — обновление 16.11.2015}}.
+
Презентация: [[Media:Voron-ML-forecasting-slides.pdf|(PDF,&nbsp;0,9&nbsp;)]] {{важно|— обновление 14.12.2019}}.
 +
Видеозапись: [https://youtu.be/HyWm8FKzyPw Лекция] [https://youtu.be/hxKdtWVqEhg Семинар]
 +
[https://youtu.be/u433nrxdf5k Видеозапись лекции Евгения Рябенко]
 +
 
 +
* Задача прогнозирования временных рядов. Примеры приложений.
 +
* [[Экспоненциальное сглаживание|Экспоненциальное скользящее среднее]]. [[Модель Хольта]]. [[Модель Тейла-Вейджа]]. [[Модель Хольта-Уинтерса]].
 +
* Адаптивная авторегрессионная модель.
 +
* [[Следящий контрольный сигнал]]. [[Модель Тригга-Лича]].
 +
* Адаптивная селективная модель. Адаптивная композиция моделей.
 +
* Локальная адаптация весов с регуляризацией.
--->
--->
-
Презентация: [[Media:Voron-ML-TopicModeling-slides.pdf|(PDF,&nbsp;1.6&nbsp;МБ)]] {{важно| — обновление 1.11.2017}}.
+
 
-
* Задача [[тематическое моделирование|тематического моделирования]] коллекции текстовых документов.
+
== Инкрементное и онлайновое обучение ==
-
* [[Вероятностный латентный семантический анализ]] PLSA. [[Метод максимума правдоподобия]]. [[ЕМ-алгоритм]]. Элементарная интерпретация EM-алгоритма.
+
Презентация: [[Media:Voron-ML-incremental-slides.pdf|(PDF,&nbsp;1,1&nbsp;)]] {{важно|— обновление 05.05.2024}}.
-
* [[Латентное размещение Дирихле]] LDA. [[Метод максимума апостериорной вероятности]]. Сглаженная частотная оценка условной вероятности.
+
Видеозапись: [https://youtu.be/3KflU279d_w Лекция] [ Семинар]
-
* Небайесовская интерпретация LDA и её преимущества. Регуляризаторы разреживания, сглаживания, частичного обучения.
+
 
-
* Аддитивная регуляризация тематических моделей. Регуляризованный EM-алгоритм, теорема о стационарной точке (применение условий Каруша–Куна–Таккера).
+
* Задачи инкрементного и онлайнового обучения. Оценивание инкрементного обучения. Кривые обучения.
-
* Рациональный EM-алгоритм. Онлайновый EM-алгоритм и его распараллеливание.
+
* Ленивое обучение (метрические и непараметрические методы). Онлайновый отбор эталонных объектов.
-
* Мультимодальная тематическая модель.
+
* Онлайновый наивный байесовский классификатор.
-
* Регуляризаторы классификации и регрессии.
+
* Онлайновый градиентный спуск OGD. Алгоритм Perceptron. Алгоритм Passive-Aggressive.
-
* Регуляризаторы декоррелирования и отбора тем.
+
* Инкрементные решающие деревья ID5R.
-
* Внутренние и внешние критерии качества тематических моделей.
+
* Рекуррентный метод наименьших квадратов RLS. Формула Шермана-Моррисона.
 +
* Задача прогнозирования временных рядов. Эконометрические временные ряды с трендом и сезонностью.
 +
* [[Экспоненциальное сглаживание|Экспоненциальное скользящее среднее]]. [[Модель Хольта]]. [[Модель Тейла-Вейджа]]. [[Модель Хольта-Уинтерса]].
 +
* Адаптивная селективная модель. Адаптивная композиция моделей.
 +
* Онлайновое обучение ансамбля. Алгоритм Hedge, его свойства и интерпретация в задаче портфельного инвестирования.
 +
* Онлайновое глубокое обучение. Алгоритм Hedge BackProp.
 +
<!---* Онлайновое обучение новым классам. Проблема катастрофического забывания. Алгоритм iCaRL.--->
== Обучение с подкреплением ==
== Обучение с подкреплением ==
-
Презентация: [[Media:Voron-ML-RL-slides.pdf|(PDF,&nbsp;1.0&nbsp;МБ)]] {{важно| — обновление 1.11.2017}}.
+
Презентация: [[Media:Voron-ML-RL-slides.pdf|(PDF,&nbsp;1.9&nbsp;МБ)]] {{важно| — обновление 05.05.2024}}.
-
* Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound). Стратегия Softmax.
+
Видеозапись: [https://youtu.be/B4Fk2KNHzFY Лекция] [https://youtu.be/3Xex0Z5D6O8 Семинар]
-
* Среда для экспериментов.
+
 
-
* Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
+
* Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound).
-
* Постановка задачи при наличии информации о среде в случае выбора действия. Контекстный многорукий бандит.
+
* Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
-
* Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
+
-
* Оценивание новой стратегии по большим историческим данным.
+
* Постановка задачи в случае, когда агент влияет на среду. Ценность состояния среды. Ценность действия.
* Постановка задачи в случае, когда агент влияет на среду. Ценность состояния среды. Ценность действия.
* Жадные стратегии максимизации ценности. Уравнения оптимальности Беллмана.
* Жадные стратегии максимизации ценности. Уравнения оптимальности Беллмана.
-
* Метод временных разностей TD(0). Метод SARSA. Метод Q-обучения.
+
* Метод SARSA. Метод Q-обучения. Типизация методов на on-policy и off-policy.
-
* Многошаговое TD-прогнозирование. Обобщения методов временных разностей, SARSA, Q-обучения.
+
* Глубокое Q-обучение нейронной сети DQN на примере обучения играм Atari.
-
<!---* Адаптивный полужадный метод VDBE.--->
+
<!---* Метод временных разностей TD. Многошаговое TD-прогнозирование. Обобщения методов временных разностей, SARSA, Q-обучения. --->
 +
* Градиентная оптимизация стратегии (policy gradient). Связь с максимизацией log-правдоподобия.
 +
* Модели актор-критик. Модели с непрерывным управлением.
 +
* Постановка задачи при моделировании среды. Типизация методов на model-free и model-based.
 +
* Контекстный многорукий бандит. Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
 +
* Оценивание новой стратегии по большим историческим данным, сформированным при старых стратегиях.
== Активное обучение ==
== Активное обучение ==
-
Презентация: [[Media:Voron-ML-AL-slides.pdf|(PDF,&nbsp;1.3&nbsp;МБ)]] {{важно| — обновление 23.11.2016}}.
+
Презентация: [[Media:Voron-ML-AL-slides.pdf|(PDF,&nbsp;2.3&nbsp;МБ)]] {{важно| — обновление 26.04.2024}}.
-
* Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов.
+
Видеозапись: [https://youtu.be/kGJ7PPTcUHw Лекция] [https://youtu.be/JlPLaNQXNO8 Семинар]
-
* Сэмплирование по неуверенности. Почему активное обучение быстрее пассивного.
+
 
 +
* Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов. Приложения активного обучения.
 +
* Почему активное обучение быстрее пассивного. Оценивание качества активного обучения. Кривые обучения.
 +
* Сэмплирование по неуверенности.
* Сэмплирование по несогласию в комитете. Сокращение пространства решений.
* Сэмплирование по несогласию в комитете. Сокращение пространства решений.
* Сэмплирование по ожидаемому изменению модели.
* Сэмплирование по ожидаемому изменению модели.
* Сэмплирование по ожидаемому сокращению ошибки.
* Сэмплирование по ожидаемому сокращению ошибки.
 +
* Синтез объектов методами безградиентной оптимизации. [[Метод Нелдера-Мида]].
* Синтез объектов по критерию сокращения дисперсии.
* Синтез объектов по критерию сокращения дисперсии.
* Взвешивание по плотности.
* Взвешивание по плотности.
-
* Оценивание качества активного обучения.
 
* Введение изучающих действий в стратегию активного обучении. Алгоритмы ε-active и EG-active.
* Введение изучающих действий в стратегию активного обучении. Алгоритмы ε-active и EG-active.
-
* Применение обучения с подкреплением для активного обучения. Активное томпсоновское сэмплирование.
+
* Использование активного обучения в краудсорсинге. Согласование оценок аннотаторов. Назначение заданий аннотаторам.
 +
<!---* Применение обучения с подкреплением для активного обучения. Активное томпсоновское сэмплирование.--->
 +
 
 +
== Интерпретируемость и объяснимость ==
 +
Презентация: [[Media:Voron-ML-xai.pdf|(PDF,&nbsp;3.8&nbsp;МБ)]] {{важно| — обновление 04.05.2024}}.
 +
 
 +
* Интерпретируемость и объяснимость — цели, задачи, основные понятия.
 +
* Интерпретируемые модели машинного обучения.
 +
* Оценки значимости признаков в линейной регрессии.
 +
* Графики частичной зависимости (Partial Dependence Plot, PDP).
 +
* Графики индивидуальных условных зависимостей (ICE).
 +
* Перестановочные оценки значимости признаков.
 +
* Вектор Шепли (из теории кооперативных игр), его свойства, способы оценивания, применение в линейной регрессии.
 +
* Суррогатное моделирование в окрестности объекта.
 +
* Метод LIME (Local Interpretable Model-agnostic Explanations).
 +
* Метод якорей (Anchors).
 +
* Метод SHAP (SHapley Additive exPlanations).
 +
* Метод Shapley Kernel.
 +
* Метод SAGE (Shapley Additive Global importancE).
 +
* Вектор Шепли для объектов, метод Gradient Shapley.
 +
* Контрфактическое объяснение, метод поиска контрфактов (Counterfactual explanations).
 +
 
 +
= Дополнительные лекции =
 +
 
 +
== Теория переобучения ==
 +
Презентация: [[Media:Voron-ML-overfitting.pdf|(PDF,&nbsp;1.6&nbsp;МБ)]] {{важно| — обновление 3.11.2024}}.
 +
* Задача оценивания вероятности переобучения. Матрица ошибок конечного множества алгоритмов.
 +
* [[Теория Вапника–Червоненкиса]]. Размерность Вапника–Червоненкиса (VC-dimension, [[ёмкость]]). [[Метод структурной минимизации риска]].
 +
* Бритва Оккама (Occam's razor bound).
 +
* Эксперименты с переобучением. Монотонная цепь алгоритмов.
 +
* Переобучение при выборе из двух алгоритмов.
 +
* Комбинаторная теория переобучения. Граф расслоения-связности конечного множества алгоритмов.
 +
* Порождающие и запрещающие множества. Связность и неоптимальность алгоритма. Оценка расслоения-связности.
 +
 
 +
== Обзор оптимизационных задач машинного обучения ==
 +
Презентация: [[Media:Voron-ML-final.pdf|(PDF,&nbsp;3.9&nbsp;МБ)]] {{важно| — обновление 4.05.2021}}.
 +
Видеозапись: [https://youtu.be/eDptWKPrIy4 Лекция]
= См. также =
= См. также =

Текущая версия

Содержание

Машинное обучение (machine learning) находится на стыке прикладной статистики, численных методов оптимизации, дискретного анализа, и за последние 60 лет оформилась в самостоятельную математическую и инженерную дисциплину.

В курсе рассматриваются основные задачи обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности. Изучаются методы их решения, как классические, так и новые, созданные за последние 10–15 лет. Упор делается на глубокое понимание математических основ, взаимосвязей, достоинств и ограничений рассматриваемых методов. Теоремы в основном приводятся без доказательств.

Все методы излагаются по единой схеме:

  • исходные идеи и эвристики;
  • их формализация и математическая теория;
  • описание алгоритма в виде слабо формализованного псевдокода;
  • анализ достоинств, недостатков и границ применимости;
  • пути устранения недостатков;
  • сравнение и взаимосвязи с другими методами.
  • примеры прикладных задач.

На семинарах разбираются дополнительные примеры, аспекты практического применения, работа с данными, программирование, проведение вычислительных экспериментов.

Курс читается

От студентов требуются знания курсов линейной алгебры, математического анализа, теории вероятностей, языка программирования Python. Знание математической статистики, методов оптимизации желательно, но не обязательно.

Курсивом выделен дополнительный материал, который может разбираться на семинарах.

Замечания для студентов

Семестр 1. Математические основы машинного обучения

Текст лекций: (PDF, 3 МБ) — обновление 4.10.2011.

Основные понятия и примеры прикладных задач

Презентация: (PDF, 1,7 МБ) — обновление 13.09.2024. Видеозапись: Лекция Семинар

Линейный классификатор и стохастический градиент

Презентация: (PDF, 1,2 МБ) — обновление 13.09.2024. Видеозапись: Лекция Семинар

  • Линейный классификатор, модель МакКаллока-Питтса, непрерывные аппроксимации пороговой функции потерь.
  • Бинарная классификация и многоклассовая классификация.
  • Метод стохастического градиента SG.
  • Эвристики: инерция и ускоренный градиент, инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов.
  • Проблема мультиколлинеарности и переобучения, регуляризация или редукция весов (weight decay).
  • Вероятностная постановка задачи классификации. Принцип максимума правдоподобия.
  • Вероятностная интерпретация регуляризации, совместное правдоподобие данных и модели. Принцип максимума апостериорной вероятности.
  • Гауссовский и лапласовский регуляризаторы.
  • Логистическая регрессия. Принцип максимума правдоподобия и логарифмическая функция потерь. Метод стохастического градиента для логарифмической функции потерь. Многоклассовая логистическая регрессия. Регуляризованная логистическая регрессия.

Нейронные сети: градиентные методы оптимизации

Презентация: (PDF, 1,5 МБ) — обновление 20.09.2024. Видеозапись: Лекция Семинар

Метрические методы классификации и регрессии

Презентация: (PDF, 3,9 МБ) — обновление 03.10.2024. Видеозапись: Лекция Семинар

Метод опорных векторов

Презентация: (PDF, 1,3 МБ) — обновление 3.10.2024. Видеозапись: Лекция Семинар

  • Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin).
  • Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочно-линейная функция потерь.
  • Задача квадратичного программирования и двойственная задача. Понятие опорных векторов.
  • Рекомендации по выбору константы C.
  • Функция ядра (kernel functions), спрямляющее пространство, теорема Мерсера.
  • Способы конструктивного построения ядер. Примеры ядер.
  • SVM-регрессия.
  • Регуляризации для отбора признаков: LASSO SVM, Elastic Net SVM, SFM, RFM.
  • Метод релевантных векторов RVM

Линейные модели регрессии

Презентация: (PDF, 1,1 MБ) — обновление 11.10.2024. Видеозапись: Лекция Семинар

Нелинейная регрессия

Презентация: (PDF, 0,8 MБ) — обновление 24.10.2024. Видеозапись: Лекция Семинар

Качество классификации и отбор признаков

Текст лекций: (PDF, 330 КБ).
Презентация: (PDF, 1,6 МБ) — обновление 24.10.2024. Видеозапись: Лекция Семинар

Логические методы классификации

Текст лекций: (PDF, 625 КБ).
Презентация: (PDF, 1.3 МБ) — обновление 03.11.2024. Видеозапись: Лекция Семинар

Линейные ансамбли

Текст лекций: (PDF, 1 MБ).
Презентация: (PDF, 1.5 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Продвинутые методы ансамблирования

Презентация: (PDF, 1.5 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Оценивание плотности и байесовская классификация

Презентация: (PDF, 1,8 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

Кластеризация и частичное обучение

Презентация: (PDF, 2,3 МБ) — обновление 04.05.2024. Видеозапись: Лекция Семинар

  • Постановка задачи кластеризации. Примеры прикладных задач. Типы кластерных структур.
  • Постановка задачи Semisupervised Learning, примеры приложений.
  • Критерии качества кластеризации, коэффициент силуэта, BCubed-меры точности и полноты.
  • Алгоритм k-средних и ЕМ-алгоритм для разделения гауссовской смеси.
  • Алгоритм DBSCAN.
  • Агломеративная кластеризация, Алгоритм Ланса-Вильямса и его частные случаи.
  • Алгоритм построения дендрограммы. Определение числа кластеров.
  • Свойства сжатия/растяжения и монотонности.
  • Простые эвристические методы частичного обучения: self-training, co-training, co-learning.
  • Трансдуктивный метод опорных векторов TSVM.
  • Алгоритм Expectation-Regularization на основе многоклассовой регуляризированной логистической регрессии.

Детекция аномалий и робастные методы

Презентация: (PDF, 1.8 МБ) — обновление 04.05.2024.

  • Задачи выявления аномалий. Эвристические методы выявления аномалий. Алгоритм LOWESS.
  • Теория робастного обучения. Схема итерационного перевзвешивания объектов IRS.
  • Семейство робастных агрегирующих функций.
  • Итерационное перевзвешивание для произвольной агрегирующей функции. Алгоритм IR-ERM.
  • Робастная регрессия. Робастная классификация. Робастная кластеризация.
  • Выявление аномалий с помощью одноклассового SVM.
  • Парадигмы обучения PU-Learning, One-Class Classification, Open-Set Recognition, Open-World Recognition.

Семестр 2. Прикладные модели машинного обучения

Глубокие нейронные сети

Презентация: (PDF, 4,1 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Обоснования глубоких нейронных сетей: выразительные возможности, скорость сходимости при избыточной параметризации.
  • Свёрточные нейронные сети (CNN) для изображений. Свёрточный нейрон. Pooling нейрон. Выборка размеченных изображений ImageNet.
  • ResNet: остаточная нейронная сеть (residual NN). Сквозные связи между слоями (skip connection).
  • Свёрточные сети для сигналов, текстов, графов, игр.
  • Рекуррентные нейронные сети (RNN). Обучение рекуррентных сетей: Backpropagation Through Time (BPTT).
  • Сети долгой кратковременной памяти (Long short-term memory, LSTM).
  • Рекуррентные сети Gated Recurrent Unit (GRU) и Simple Recurrent Unit (SRU).

Нейронные сети с обучением без учителя

Презентация: (PDF, 2,3 МБ) — обновление 09.02.2024. Видеозапись: Лекция Семинар

  • Нейронная сеть Кохонена. Конкурентное обучение, стратегии WTA и WTM.
  • Самоорганизующаяся карта Кохонена. Применение для визуального анализа данных. Искусство интерпретации карт Кохонена.
  • Автокодировщик. Линейный AE, SAE, DAE, CAE, RAE, VAE, AE для классификации, многослойный AE.
  • Пред-обучение нейронных сетей (pre-training).
  • Перенос обучения (transfer learning).
  • Многозадачное обучение (multi-task learning).
  • Самостоятельное обучение (self-supervised learning).
  • Дистилляция моделей или суррогатное моделирование.
  • Обучение с использованием привилегированной информации (learning using priveleged information, LUPI).
  • Генеративные состязательные сети (generative adversarial net, GAN).

Векторные представления текстов и графов

Презентация: (PDF, 1,6 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Векторные представления текста. Гипотеза дистрибутивной семантики.
  • Модели CBOW и SGNS из программы word2vec. Иерархический SoftMax.
  • Модель FastText.
  • Векторные представления графов.
  • Многомерное шкалирование (multidimensional scaling, MDS).
  • Векторное представление соседства (stochastic neighbor embedding, SNE и tSNE).
  • Матричные разложения (graph factorization).
  • Модели случайных блужданий DeepWalk, node2vec.
  • Обобщённый автокодировщик на графах GraphEDM.
  • Представление о графовых нейронных сетях (graph neural network, GNN). Передача сообщений по графу (message passing).

Модели внимания и трансформеры

Презентация: (PDF, 1,1 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Задачи обработки и преобразования последовательностей (sequence to sequence).
  • Рекуррентная сеть с моделью внимания.
  • Разновидности моделей внимания: многомерное, иерархическое, Query–Key–Value, внутреннее (self-attention).
  • Модели внимания на графах (Graph Attention Network). Задача классификации вершин графа.
  • Трансформеры. Особенности архитектуры кодировщика и декодировщка.
  • Критерии обучения и оценивание качества (предобучение). Модель BERT.
  • Прикладные задачи: машинный перевод, аннотирование изображений.
  • Модели внимания и трансформеры для текстов, изображений, графов.

Тематическое моделирование

Презентация: (PDF, 3.9 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

Обучение ранжированию

Презентация: (PDF, 0,9 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Постановка задачи обучения ранжированию. Примеры.
  • Поточечные методы Ранговая регрессия. Ранговая классификация, OC-SVM.
  • Попарные методы: RankingSVM, RankNet, LambdaRank.
  • Списочные методы.
  • Признаки в задаче ранжирования поисковой выдачи: текстовые, ссылочные, кликовые. TF-IDF, Okapi BM25, PageRank.
  • Критерии качества ранжирования: Precision, MAP, AUC, DCG, NDCG, pFound.
  • Глубокая структурированная семантическая модель DSSM (Deep Structured Semantic Model).

Рекомендательные системы

Презентация: (PDF, 0.9 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Задачи коллаборативной фильтрации, транзакционные данные.
  • Корреляционные методы user-based, item-based. Задача восстановления пропущенных значений. Меры сходства.
  • Разреженная линейная модель (Sparse LInear Method, SLIM).
  • Латентные методы на основе матричных разложений. Метод главных компонент для разреженных данных (LFM, Latent Factor Model). Метод стохастического градиента.
  • Неотрицательные матричные разложения NNMF. Метод чередующихся наименьших квадратов ALS. Вероятностный латентный семантический анализ PLSA.
  • Модель с учётом неявной информации (implicit feedback).
  • Автокодировщики для коллаборативной фильтрации.
  • Учёт дополнительных признаковых данных в матричных разложениях и автокодировщиках.
  • Линейная и квадратичная регрессионные модели, libFM.
  • Гиперграфовая транзакционная тематическая модель для учёта дополнительных данных.
  • Измерение качества рекомендаций. Меры разнообразия (diversity), новизны (novelty), покрытия (coverage), догадливости (serendipity).

Поиск ассоциативных правил

Презентация: (PDF, 1.8 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Понятие ассоциативного правила и его связь с понятием логической закономерности.
  • Примеры прикладных задач: анализ рыночных корзин, выделение терминов и тематики текстов.
  • Алгоритм APriori. Два этапа: поиск частых наборов и рекурсивное порождение ассоциативных правил. Недостатки и пути усовершенствования алгоритма APriori.
  • Алгоритм FP-growth. Понятия FP-дерева и условного FP-дерева. Два этапа поиска частых наборов в FP-growth: построение FP-дерева и рекурсивное порождение частых наборов.
  • Общее представление о динамических и иерархических методах поиска ассоциативных правил.
  • Алгоритм TopMine для поиска коллокаций и терминов в текстах.

Инкрементное и онлайновое обучение

Презентация: (PDF, 1,1 MБ) — обновление 05.05.2024. Видеозапись: Лекция [ Семинар]

  • Задачи инкрементного и онлайнового обучения. Оценивание инкрементного обучения. Кривые обучения.
  • Ленивое обучение (метрические и непараметрические методы). Онлайновый отбор эталонных объектов.
  • Онлайновый наивный байесовский классификатор.
  • Онлайновый градиентный спуск OGD. Алгоритм Perceptron. Алгоритм Passive-Aggressive.
  • Инкрементные решающие деревья ID5R.
  • Рекуррентный метод наименьших квадратов RLS. Формула Шермана-Моррисона.
  • Задача прогнозирования временных рядов. Эконометрические временные ряды с трендом и сезонностью.
  • Экспоненциальное скользящее среднее. Модель Хольта. Модель Тейла-Вейджа. Модель Хольта-Уинтерса.
  • Адаптивная селективная модель. Адаптивная композиция моделей.
  • Онлайновое обучение ансамбля. Алгоритм Hedge, его свойства и интерпретация в задаче портфельного инвестирования.
  • Онлайновое глубокое обучение. Алгоритм Hedge BackProp.

Обучение с подкреплением

Презентация: (PDF, 1.9 МБ) — обновление 05.05.2024. Видеозапись: Лекция Семинар

  • Задача о многоруком бандите. Жадные и эпсилон-жадные стратегии. Метод UCB (upper confidence bound).
  • Адаптивные стратегии на основе скользящих средних. Метод сравнения с подкреплением. Метод преследования.
  • Постановка задачи в случае, когда агент влияет на среду. Ценность состояния среды. Ценность действия.
  • Жадные стратегии максимизации ценности. Уравнения оптимальности Беллмана.
  • Метод SARSA. Метод Q-обучения. Типизация методов на on-policy и off-policy.
  • Глубокое Q-обучение нейронной сети DQN на примере обучения играм Atari.
  • Градиентная оптимизация стратегии (policy gradient). Связь с максимизацией log-правдоподобия.
  • Модели актор-критик. Модели с непрерывным управлением.
  • Постановка задачи при моделировании среды. Типизация методов на model-free и model-based.
  • Контекстный многорукий бандит. Линейная регрессионная модель с верхней доверительной оценкой LinUCB.
  • Оценивание новой стратегии по большим историческим данным, сформированным при старых стратегиях.

Активное обучение

Презентация: (PDF, 2.3 МБ) — обновление 26.04.2024. Видеозапись: Лекция Семинар

  • Постановка задачи машинного обучения. Основные стратегии: отбор объектов из выборки и из потока, синтез объектов. Приложения активного обучения.
  • Почему активное обучение быстрее пассивного. Оценивание качества активного обучения. Кривые обучения.
  • Сэмплирование по неуверенности.
  • Сэмплирование по несогласию в комитете. Сокращение пространства решений.
  • Сэмплирование по ожидаемому изменению модели.
  • Сэмплирование по ожидаемому сокращению ошибки.
  • Синтез объектов методами безградиентной оптимизации. Метод Нелдера-Мида.
  • Синтез объектов по критерию сокращения дисперсии.
  • Взвешивание по плотности.
  • Введение изучающих действий в стратегию активного обучении. Алгоритмы ε-active и EG-active.
  • Использование активного обучения в краудсорсинге. Согласование оценок аннотаторов. Назначение заданий аннотаторам.

Интерпретируемость и объяснимость

Презентация: (PDF, 3.8 МБ) — обновление 04.05.2024.

  • Интерпретируемость и объяснимость — цели, задачи, основные понятия.
  • Интерпретируемые модели машинного обучения.
  • Оценки значимости признаков в линейной регрессии.
  • Графики частичной зависимости (Partial Dependence Plot, PDP).
  • Графики индивидуальных условных зависимостей (ICE).
  • Перестановочные оценки значимости признаков.
  • Вектор Шепли (из теории кооперативных игр), его свойства, способы оценивания, применение в линейной регрессии.
  • Суррогатное моделирование в окрестности объекта.
  • Метод LIME (Local Interpretable Model-agnostic Explanations).
  • Метод якорей (Anchors).
  • Метод SHAP (SHapley Additive exPlanations).
  • Метод Shapley Kernel.
  • Метод SAGE (Shapley Additive Global importancE).
  • Вектор Шепли для объектов, метод Gradient Shapley.
  • Контрфактическое объяснение, метод поиска контрфактов (Counterfactual explanations).

Дополнительные лекции

Теория переобучения

Презентация: (PDF, 1.6 МБ) — обновление 3.11.2024.

  • Задача оценивания вероятности переобучения. Матрица ошибок конечного множества алгоритмов.
  • Теория Вапника–Червоненкиса. Размерность Вапника–Червоненкиса (VC-dimension, ёмкость). Метод структурной минимизации риска.
  • Бритва Оккама (Occam's razor bound).
  • Эксперименты с переобучением. Монотонная цепь алгоритмов.
  • Переобучение при выборе из двух алгоритмов.
  • Комбинаторная теория переобучения. Граф расслоения-связности конечного множества алгоритмов.
  • Порождающие и запрещающие множества. Связность и неоптимальность алгоритма. Оценка расслоения-связности.

Обзор оптимизационных задач машинного обучения

Презентация: (PDF, 3.9 МБ) — обновление 4.05.2021. Видеозапись: Лекция

См. также

Литература

  1. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer, 2014. — 739 p.
  2. Bishop C. M. Pattern Recognition and Machine Learning. — Springer, 2006. — 738 p.
  3. Мерков А. Б. Распознавание образов. Введение в методы статистического обучения. 2011. 256 с.
  4. Мерков А. Б. Распознавание образов. Построение и обучение вероятностных моделей. 2014. 238 с.
  5. Коэльо Л.П., Ричарт В. Построение систем машинного обучения на языке Python. 2016. 302 с.

Список подстраниц

Машинное обучение (курс лекций, К.В.Воронцов)/2009Машинное обучение (курс лекций, К.В.Воронцов)/ToDoМашинное обучение (курс лекций, К.В.Воронцов)/Вопросы
Машинное обучение (курс лекций, К.В.Воронцов)/Семестровый курсМашинное обучение (курс лекций, К.В.Воронцов)/Форма отчета