Применение сплайнов для численного интегрирования
Материал из MachineLearning.
(орфография, категория) |
|||
Строка 1: | Строка 1: | ||
== Введение == | == Введение == | ||
- | |||
Ставится задача вычислить интеграл вида | Ставится задача вычислить интеграл вида | ||
{{eqno |1}} | {{eqno |1}} | ||
Строка 14: | Строка 13: | ||
::<tex>\int_a^bf(t)dt=\sum_{i=1}^N\;\int_{t_{i-1}}^{t_i}f(t)dt.</tex> | ::<tex>\int_a^bf(t)dt=\sum_{i=1}^N\;\int_{t_{i-1}}^{t_i}f(t)dt.</tex> | ||
- | Сущность большинства методов вычисления | + | Сущность большинства методов вычисления определённых интегралов состоит в замене подынтегральной функции <tex>f(t)</tex> на отрезке <tex>[t_{i-1},\;t_i]</tex> аппроксимирующей функцией <tex>\varphi(t)</tex>, для которой можно легко записать первообразную в элементарных функциях, т.е. |
{{eqno |3}} | {{eqno |3}} | ||
::<tex>\int_{t_{i-1}}^{t_i}f(t)dt=\int_{t_{i-1}}^{t_i}\varphi(t)dt+R=S+R,</tex> | ::<tex>\int_{t_{i-1}}^{t_i}f(t)dt=\int_{t_{i-1}}^{t_i}\varphi(t)dt+R=S+R,</tex> | ||
- | где S - | + | где S - приближённое значение интеграла; R - погрешность вычисления интеграла. Лучше всего изучена замена <tex>f(t)</tex> алгебраическим многочленом. |
== Изложение метода == | == Изложение метода == | ||
- | + | Возьмём в {{eqref|3}} в качестве аппроксимирующей функции [[Интерполяция кубическими сплайнами|кубический сплайн]]: | |
{{eqno |4}} | {{eqno |4}} | ||
::<tex>\int_a^bf(t)dt \approx \sum_{i=1}^N\;\int_{t_{i-1}}^{t_i}\varphi_i(t)dt,</tex> где | ::<tex>\int_a^bf(t)dt \approx \sum_{i=1}^N\;\int_{t_{i-1}}^{t_i}\varphi_i(t)dt,</tex> где | ||
Строка 49: | Строка 48: | ||
::<tex>J \;\approx \;\sum_{i=1}^n\;\frac{f_i+f_{i-1}}{2}\tau_i\;-\;\sum_{i=1}^n\;\frac{\tau_i^3(c_{i+1}+c_i)}{12}.</tex> | ::<tex>J \;\approx \;\sum_{i=1}^n\;\frac{f_i+f_{i-1}}{2}\tau_i\;-\;\sum_{i=1}^n\;\frac{\tau_i^3(c_{i+1}+c_i)}{12}.</tex> | ||
- | Нетрудно видеть, что | + | Нетрудно видеть, что матрица для решения СЛАУ {{eqref|5c}} есть трёхдиагональная матрица с диагональным преобладанием. Поэтому коэффициенты <tex>c_i</tex> можно вычислить с помощью метода прогонки. |
== Анализ метода и ошибок == | == Анализ метода и ошибок == | ||
Строка 154: | Строка 153: | ||
== Заключение == | == Заключение == | ||
- | Итак, мы получили, что погрешность сплайн-квадратуры меньше, чем погрешность метода трапеций. Однако алгоритм интегрирования с помощью сплайнов сложнее алгоритмов методов трапеций и Симпсона за счет необходимости решения СЛАУ для опрееления коэффициентов сплайнов <tex>c_i.</tex> Также при решении СЛАУ теряется точность. Поэтому рационально использовать сплайн-квадратуры в комплексе, когда сплайны применяются для сглаживания зависимостей, обработки эксперимениальных данных и т.п. | + | Итак, мы получили, что погрешность сплайн-квадратуры меньше, чем погрешность метода трапеций. Однако [[алгоритм]] интегрирования с помощью сплайнов сложнее алгоритмов методов трапеций и Симпсона за счет необходимости решения СЛАУ для опрееления коэффициентов сплайнов <tex>c_i.</tex> Также при решении СЛАУ теряется точность. Поэтому рационально использовать сплайн-квадратуры в комплексе, когда сплайны применяются для сглаживания зависимостей, обработки эксперимениальных данных и т.п. |
== Ссылки == | == Ссылки == | ||
Строка 165: | Строка 164: | ||
* http://myhomepage.h17.ru/Lect06/lect06.htm#02 | * http://myhomepage.h17.ru/Lect06/lect06.htm#02 | ||
* А.Е. Мудров. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. - Томск:МП "РАСКО", 1991. | * А.Е. Мудров. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. - Томск:МП "РАСКО", 1991. | ||
+ | |||
[[Категория:Численное интегрирование]] | [[Категория:Численное интегрирование]] | ||
+ | [[Категория:Учебные задачи]] |
Версия 19:42, 19 октября 2008
Содержание |
Введение
Ставится задача вычислить интеграл вида
где и - нижний и верхний пределы интегрирования; - непрерывная функция на отрезке .
Введем на отрезке интегрирования сетку, определим значения функции в узлах сетки. Пусть имеется совокупность узлов Тогда интервал разобьется на участки Пусть также задана таблица Представим интеграл (1) в виде суммы интегралов по частичным отрезкам:
Сущность большинства методов вычисления определённых интегралов состоит в замене подынтегральной функции на отрезке аппроксимирующей функцией , для которой можно легко записать первообразную в элементарных функциях, т.е.
где S - приближённое значение интеграла; R - погрешность вычисления интеграла. Лучше всего изучена замена алгебраическим многочленом.
Изложение метода
Возьмём в (3) в качестве аппроксимирующей функции кубический сплайн:
- где
Коэффициенты вычисляются по следующим формулам:
Тогда интеграл (4) запишется как сумма интегралов от сплайнов:
Последняя формула упрощается при подстановке в неё выражений (5a), (5b) и (5d) для коэффициентов и
Нетрудно видеть, что матрица для решения СЛАУ (5c) есть трёхдиагональная матрица с диагональным преобладанием. Поэтому коэффициенты можно вычислить с помощью метода прогонки.
Анализ метода и ошибок
Анализ формулы (6) показывает, что первый член в правой части совпадает с формулой трапеций. Следовательно, второй член характеризует поправку к методу трапеций, которую дает использование сплайнов.
Как следует из формулы (φ), коэффициенты выражаются через вторые производные
Это позволяет оценить второй член правой части формулы (6):
где - вторая производная в некоторой внутренней точке. Полученная оценка показывает, что добавка к формуле трапеций, которую дает использование сплайнов, компенсирует погрешность самой формулы трапеций.
Числовой пример
Рассмотрим функцию Вычислим с помощью сплайн-квадратур приближенное значение интеграла
и исследуем поведение погрешности. Результаты работы программы приведены в следующей таблице:
N J ε 5 -8.88236 7.28236 10 -3.61479 2.01479 20 -2.13136 0.53136 50 -1.68776 0.087758 100 -1.62217 0.022169 200 -1.60557 0.00557 500 -1.60089 0.00089 1000 -1.60022 0.00022 2000 -1.60006 0.00005
Здесь N - число отрезков, на которые разбивается интервал [0,4], J - приблизительное значение интеграла, ε - ошибка.
Как видно из таблицы, при малых N (особенно при N=5) ошибка невероятно велика. Однако с ростом N ошибка стремительно убывает, и приблизительное значение интеграла сходится к правильному значению.
Рекомендации программисту
Пример программы
Ниже приведен пример программы на языке C++, считающей приближенное значение интеграла с помощью сплайн-квадратур: Splineint.zip [0.7Кб]
Некоторые комментарии по работе с программой:
В 5-й строке const int N=100;
N - число отрезков
В 7-й строке const double a=1,b=6;
и - пределы интегрирования.
В 49-й строке f[i]=0.6*x*x*x-3*x*x+3*x;
f[i] - интегрируемая функция.
Случай с равномерной сеткой
Пусть на отрезке задана равномерная сетка, т.е. Тогда выражение (6) перепишется в виде:
Просуммируем уравнения (5c) от i=2 до N. Получим:
Подставим (8) в (7) и получим окончательное выражение для :
Несмотря на то, что и все равно придется вычислять методом прогонки, точность и скорость вычисления приближенного значения интеграла будут увеличены за счет сокращения числа слагаемых.
Заключение
Итак, мы получили, что погрешность сплайн-квадратуры меньше, чем погрешность метода трапеций. Однако алгоритм интегрирования с помощью сплайнов сложнее алгоритмов методов трапеций и Симпсона за счет необходимости решения СЛАУ для опрееления коэффициентов сплайнов Также при решении СЛАУ теряется точность. Поэтому рационально использовать сплайн-квадратуры в комплексе, когда сплайны применяются для сглаживания зависимостей, обработки эксперимениальных данных и т.п.
Ссылки
Список литературы
- http://www.intuit.ru/department/calculate/calcmathbase/7/1.html
- http://mathalgo.blogspot.com/2007/11/blog-post.html
- http://myhomepage.h17.ru/Lect06/lect06.htm#02
- А.Е. Мудров. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. - Томск:МП "РАСКО", 1991.