Математические методы прогнозирования (кафедра ВМиК МГУ)/Кафедральные курсы

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(категория)
м
Строка 28: Строка 28:
|style="text-align:left;" | [[Математические методы прогнозирования (кафедра ВМиК МГУ)/Материалы|'''Материалы''']]
|style="text-align:left;" | [[Математические методы прогнозирования (кафедра ВМиК МГУ)/Материалы|'''Материалы''']]
|-
|-
-
|style="text-align:left;" | [[Математические методы прогнозирования (кафедра ВМиК МГУ)/Дипломные работы|'''Дипломные работы]]
+
|style="text-align:left;" | [[Математические методы прогнозирования (кафедра ВМиК МГУ)/Диссертации/дипломные работы|'''Дипломные работы]]
|-
|-
|style="text-align:left;" | [[Математические методы прогнозирования (кафедра ВМиК МГУ)/Просеминар|'''Просеминар''']]
|style="text-align:left;" | [[Математические методы прогнозирования (кафедра ВМиК МГУ)/Просеминар|'''Просеминар''']]

Версия 09:34, 6 июня 2014

 
   
Кафедральные курсы
Спецкурсы/спецсеминары
Новости
Расписание
Учебный план
Персональный состав
Материалы
Дипломные работы
Просеминар
  Тел. +7-495-939-4202
e-mail: Изображение:MMP_email.jpg
Ученый секретарь: Д.П. Ветров
Все контакты

Содержание

Третий курс

Четвёртый курс

  • Математические основы теории прогнозирования, О.В. Сенько
    Обзорный курс для студентов 3-го потока ВМК МГУ по основным математическим методам решения задач машинного обучения. Задачей курса также является ознакомление с основными математическими теориями, которые используются при построении алгоритмов распознавания, такими как алгебра, математическая статистика, методы оптимизации, дискретная математика и др.

Пятый курс

  • Прикладной статистический анализ данных, К.В. Воронцов
    Обзорный курс, охватывающий дисперсионный, корреляционный, регрессионный анализ, анализ временных рядов и прогнозирование, анализ выживаемости, анализ панельных данных, выборочный анализ. Цели курса — связать математическую статистику с практическими приложениями в различных предметных областях, научить студентов правильно применять методы прикладной статистики.

Архив курсов

Личные инструменты