Глубинное обучение (курс лекций)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
(Занятия)
(Занятия)
Строка 40: Строка 40:
|-
|-
| 27&nbsp;октября&nbsp;2017 || align="center"|8 || Перенос стиля изображений || [[Media:VKitov-DL2017-Neural_style_transfer.pdf ‎|Презентация]]<br> [[Media:DL2017-Neural_style_transfer-review_2017.pdf‎‎ ‎|Обзор]]
| 27&nbsp;октября&nbsp;2017 || align="center"|8 || Перенос стиля изображений || [[Media:VKitov-DL2017-Neural_style_transfer.pdf ‎|Презентация]]<br> [[Media:DL2017-Neural_style_transfer-review_2017.pdf‎‎ ‎|Обзор]]
 +
|-
 +
| 10&nbsp;ноября&nbsp;2017 || align="center"|9 || Обучение с подкреплением, алгоритм Q обучения, Deep Q Network (DQN) ||
|-
|-
|}
|}

Версия 07:19, 13 ноября 2017


Преподаватели: Д.А. Кропотов, В.В. Китов, Е.М. Лобачёва, А.А. Осокин и др.

В осеннем семестре 2017 года занятия по курсу проходят на ВМК в ауд. 582 с 10-30 до 13-50.

Вопросы по курсу можно направлять письмом на bayesml@gmail.com. В название письма обязательно добавлять [ВМК ГО17].

Объявления

03.11.17: Внимание! Сегодня занятия по курсу отменяются.

05.10.17: завтра занятия по курсу пройдут в обычное время с 10-30 до 13-50.

Система выставления оценок по курсу

Будет объявлена позже.

Практические задания

Задания выдаются и принимаются через систему anytask.org. Для получения инвайта просьба писать на почту курса.

Задание 1. Автоматическое дифференцирование для автокодировщика. Срок сдачи: 8 октября (воскресенье), 23:59.

Занятия

Дата № занятия Занятие Материалы
8 сентября 2017 1 Введение в курс. Автоматическое дифференцирование.
15 сентября 2017 2 Методы регуляризации для нейросетей. Стохастическая оптимизация. Введение в pytorch. Презентация
22 сентября 2017 3 Свёрточные нейронные сети для задачи классификации изображений Презентация
29 сентября 2017 4 Свёрточные нейронные сети в задачах компьютерного зрения Презентация
6 октября 2017 5 Рекуррентные нейронные сети Презентация
13 октября 2017 6 Память и внимание в глубинном обучении Презентация
20 октября 2017 7 Вариационный автокодировщик
27 октября 2017 8 Перенос стиля изображений Презентация
Обзор
10 ноября 2017 9 Обучение с подкреплением, алгоритм Q обучения, Deep Q Network (DQN)

Литература

  1. Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning, MIT Press, 2016.

Архив

2016 год

Личные инструменты