Участник:Vokov/Publications
Материал из MachineLearning.
Publications of Konstantin Vorontsov
Here only English publications are noted, most of my publications are in Russian.
- Vorontsov K. Preliminary data processing for a special class of recognition problems // Comp. Maths Math. Phys. — 1995. — Vol. 35, no. 10. — Pp. 1259–1267. PDF, 400Kb.
- Vorontsov K. The task-oriented optimization of bases in recognition problems // Comp. Maths Math. Phys. — 1998. — Vol. 38, no. 5. — Pp. 838–847. PDF, 580Kb.
- Rudakov K., Vorontsov K. Methods of optimization and monotone correction in the algebraic approach to the recognition problem // Doklady Mathematics. — 1999. — Vol. 60, no. 1. — P. 139.
- Vorontsov K. Optimization methods for linear and monotone correction in the algebraic approach to the recognition problem // Comp. Maths Math. Phys. — 2000. — Vol. 40, no. 1. — Pp. 159–168.
- Vorontsov K. Combinatorial substantiation of learning algorithms // Comp. Maths Math. Phys. — 2004. — Vol. 44, no. 11. — Pp. 1997–2009. PDF, 206Kb.
- Vorontsov K. Combinatorial bounds for learning performance // Doklady Mathematics. — 2004. — Vol. 69, no. 1. — Pp. 145––148. PDF, 44Kb.
- Kanevskiy D., Vorontsov K. Cooperative coevolutionary ensemble learning // Multiple Classifier Systems: 7th International Workshop, Prague, Czech Republic, May 23-25, 2007. — Lecture Notes in Computer Science. Springer-Verlag, 2007. — Pp. 469–478. PDF, 155Kb.
- Leksin V., Vorontsov K. The overfitting in probabilistic latent semantic models // Pattern Recognition and Image Analysis: new information technologies (PRIA-9-2008). — Vol. 1. — Nizhni Novgorod, Russian Federation, 2008. — Pp. 393–396. PDF, 250Kb.
- Vorontsov K. Combinatorial probability and the tightness of generalization bounds // Pattern Recognition and Image Analysis. — 2008. — Vol. 18, no. 2. — Pp. 243–259. PDF, 373Kb.
- Vorontsov K. Tight Bounds for the Probability of Overfitting // Doklady Mathematics, 2009, Vol. 80, No. 3, pp. 793–796. PDF, 192Kb.
- Vorontsov K. Splitting and Similarity Phenomena in the Sets of Classifiers and Their Effect on the Probability of Overfitting // Pattern Recognition and Image Analysis, 2009, Vol. 19, No. 3, pp. 412–420. PDF, 164Kb.
- Vorontsov K. Exact Combinatorial Bounds on the Probability of Overfitting for Empirical Risk Minimization // Pattern Recognition and Image Analysis, 2010, Vol. 20, No. 3, pp. 269–285. PDF, 427Kb.
- Vorontsov K., Ivahnenko A., Botov P., Reshetnyak I., Tolstikhin I. Combinatorial generalization bounds. 2011. PDF, 315Kb (unpublished).
- Vorontsov K., Ivahnenko A. Tight Combinatorial Generalization Bounds for Threshold Conjunction Rules // Lecture Notes on Computer Science. 4th International Conference on Pattern Recognition and Machine Intelligence (PReMI’11), Russia, Moscow, June 27–July 1, 2011. Pp 66–73. PDF, 153Kb.
- Spirin N., Vorontsov K. Learning to Rank with Nonlinear Monotonic Ensemble // Lecture Notes on Computer Science. 10th International Workshop on Multiple Classidier Systems (MCS-10). Naples, Italy, June 15–17, 2011. Pp. 16–25. PDF, 490Kb.
- Potapenko A. A., Vorontsov K. V. Robust PLSA Performs Better Than LDA // 35th European Conference on Information Retrieval, ECIR-2013, Moscow, Russia, 24–27 March 2013. — Lecture Notes in Computer Science (LNCS), Springer Verlag-Germany, 2013. Pp. 784–787. PDF, 160Kb — poster: PDF, 1Mb.
- Vorontsov K. V. Additive Regularization for Topic Models of Text Collections // Doklady Mathematics. 2014, Pleiades Publishing, Ltd. — Vol. 89, No. 3, pp. 301–304. PDF, 180Kb.
- Vorontsov K. V., Potapenko A. A. Tutorial on Probabilistic Topic Modeling: Additive Regularization for Stochastic Matrix Factorization // AIST’2014, Analysis of Images, Social networks and Texts. Springer International Publishing Switzerland, 2014. Communications in Computer and Information Science (CCIS). Vol. 436. pp. 29–46. PDF, 470Kb.
- Uspenskiy V. M., Vorontsov K. V., Tselykh V. R., Bunakov V. A. Information Function of the Heart: Discrete and Fuzzy Encoding of the ECG-Signal for Multidisease Diagnostic System // in Advances in Mathematical and Computational Tools in Metrology and Testing X (vol.10), Series on Advances in Mathematics for Applied Sciences, vol. 86, World Scientific, Singapore (2015) pp 377-384.
- Vorontsov K. V., Potapenko A. A. Additive Regularization of Topic Models // Machine Learning. Special Issue “Data Analysis and Intelligent Optimization with Applications”: Volume 101, Issue 1 (2015), Pp. 303-323.
- Vorontsov K. V., Potapenko A. A., Plavin A. V. Additive Regularization of Topic Models for Topic Selection and Sparse Factorization // The Third International Symposium On Learning And Data Sciences (SLDS 2015). April 20-22, 2015. Royal Holloway, University of London, UK. Springer International Publishing Switzerland 2015, A. Gammerman et al. (Eds.): SLDS 2015, LNAI 9047, pp. 193–202, 2015.
- Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A. BigARTM: Open Source Library for Regularized Multimodal Topic Modeling of Large Collections // AIST’2015, Analysis of Images, Social Networks and Texts. Springer International Publishing Switzerland, 2015. Communications in Computer and Information Science (CCIS), pp. 370–384.
- Vorontsov K. V., Frei O. I., Apishev M. A., Romov P. A., Suvorova M. A., Yanina A. O. Non-Bayesian Additive Regularization for Multimodal Topic Modeling of Large Collections // Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Applications, October 19, 2015, Melbourne, Australia. ACM, New York, NY, USA. pp. 29–37.
- Apishev M., Koltcov S., Koltsova O., Nikolenko S., Vorontsov K. Mining Ethnic Content Online with Additively Regularized Topic Models. Computación y Sistemas, Vol. 20, No. 3, 2016, pp. 387–403.
- Apishev M., Koltcov S., Koltsova O., Nikolenko S., Vorontsov K. Additive Regularization for Topic Modeling in Sociological Studies of User-Generated Texts. 15-th Mexican International Conference on Artificial Intelligence. October 23–29, Cancún, Mexico.
- Chirkova N. A., Vorontsov K. V. Additive Regularization for Hierarchical Multimodal Topic Modeling // Journal Machine Learning and Data Analysis. 2(2), pp. 187-200. 2016.