Статистический анализ данных (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Параметрическая проверка гипотез)
м
 
(30 промежуточных версий не показаны.)
Строка 6: Строка 6:
Каждый метод описывается по единой схеме:
Каждый метод описывается по единой схеме:
* постановка задачи;
* постановка задачи;
-
* примеры прикладных задач из области экономики, социологии, производства, медицины;
+
* примеры прикладных задач из области биологии, экономики, социологии, производства, медицины;
* базовые предположения и границы применимости;
* базовые предположения и границы применимости;
-
* описание метода (для методов проверки статистических гипотез: нулевая гипотеза и альтернативы, статистика, её функция распределения с эскизом графика, критическая область);
+
* описание метода (для методов проверки статистических гипотез: нулевая гипотеза и альтернативы, статистика, её нулевое распределение);
* достоинства, недостатки, ограничения, «подводные камни»;
* достоинства, недостатки, ограничения, «подводные камни»;
* сравнение с другими методами.
* сравнение с другими методами.
-
Курс читается студентам 5&nbsp;курса кафедры [[Математические методы прогнозирования (кафедра ВМиК МГУ)|математических методов прогнозирования ВМиК МГУ]] с 2007 года и студентам 4&nbsp;курса [[Факультет управления и прикладной математики МФТИ|факультета управления и прикладной математики МФТИ]] с 2011 года. Предполагается, что студенты уже прослушали курсы теории вероятностей и математической статистики<!---, знакомы с элементами дискриминантного, факторного и кластерного анализа (по кафедральному курсу [[Машинное обучение (курс лекций, К.В.Воронцов)|«Математические методы распознавания образов»]]), регрессионного анализа и анализа временных рядов (по кафедральному курсу ММП)--->.
+
Курс читается студентам 4&nbsp;курса кафедры [[Математические методы прогнозирования (кафедра ВМиК МГУ)|математических методов прогнозирования ВМиК МГУ]] с 2007 года и студентам 4&nbsp;курса [[Факультет управления и прикладной математики МФТИ|факультета управления и прикладной математики МФТИ]] с 2011 года. Предполагается, что студенты уже прослушали курсы теории вероятностей и математической статистики<!---, знакомы с элементами дискриминантного, факторного и кластерного анализа (по кафедральному курсу [[Машинное обучение (курс лекций, К.В.Воронцов)|«Математические методы распознавания образов»]]), регрессионного анализа и анализа временных рядов (по кафедральному курсу ММП)--->.
== Программа курса ==
== Программа курса ==
Строка 30: Строка 30:
=== Параметрическая проверка гипотез ===
=== Параметрическая проверка гипотез ===
[Kanji, Кобзарь]
[Kanji, Кобзарь]
-
* Критерии нормальности: [[критерий хи-квадрат]] (Пирсона), [[критерий Шапиро-Уилка]], критерии, основанные на различиях между эмпирической и теоретической функциями распределения, [[критерий Колмогорова-Смирнова]] (Лиллиефорса). Упрощённая проверка нормальности по асимметрии и эксцессу: критерий Жарка-Бера. <!---Исторический пример: проверка закона Менделя А.Н.Колмогоровым [Тюрин, 306]. Эмпирические подтверждения ненормальности реальных измерений [Орлов, стр. 71–77]. --->
+
* Критерии нормальности: [[критерий хи-квадрат]] (Пирсона), [[критерий Шапиро-Уилка]], критерии, основанные на различиях между эмпирической и теоретической функциями распределения, [[критерий Колмогорова-Смирнова]] (Лиллиефорса). Упрощённая проверка нормальности по асимметрии и эксцессу: критерий Харке-Бера. <!---Исторический пример: проверка закона Менделя А.Н.Колмогоровым [Тюрин, 306]. Эмпирические подтверждения ненормальности реальных измерений [Орлов, стр. 71–77]. --->
* [[Нормальные параметрические критерии]] для проверки гипотез: [[гипотезы о положении]], [[гипотезы о рассеивании]].
* [[Нормальные параметрические критерии]] для проверки гипотез: [[гипотезы о положении]], [[гипотезы о рассеивании]].
-
* Гипотеза о равенстве средних: [[критерий Стьюдента]] для одной и двух выборок, [[Z-критерий]] для одной и двух выборок, связанные выборки<!---, [[гипотеза сдвига]], [[метод множественных сравнений Шеффе]], [[метод LSD]]. Пример: задача формирования ценовых коридоров. --->
+
* Гипотезы о средних: t- и z-критерии [[критерий Стьдента|Стьюдента]] для одной и двух выборок, связанные выборки<!---, [[гипотеза сдвига]], [[метод множественных сравнений Шеффе]], [[метод LSD]]. Пример: задача формирования ценовых коридоров. --->
-
* Гипотеза о равенстве дисперсий: [[критерий Фишера]]<!---, [[критерий Кокрена]], [[критерий Бартлета]]--->.
+
* Гипотезы о дисперсиях: критерии хи-квадрат и [[критерий Фишера|Фишера]]<!---, [[критерий Кокрена]], [[критерий Бартлета]]--->.
* Гипотезы о значениях параметра распределения Бернулли: сравнение значения параметра с заданным, сравнение параметров распределений двух выборок (случаи связанных и независимых выборок).
* Гипотезы о значениях параметра распределения Бернулли: сравнение значения параметра с заданным, сравнение параметров распределений двух выборок (случаи связанных и независимых выборок).
* Доверительный интервал для параметра распределения Бернулли: Вальда, Уилсона. Доверительные интервалы Уилсона для разности параметров двух выборок.
* Доверительный интервал для параметра распределения Бернулли: Вальда, Уилсона. Доверительные интервалы Уилсона для разности параметров двух выборок.
Строка 40: Строка 40:
=== Непараметрическая проверка гипотез ===
=== Непараметрическая проверка гипотез ===
-
[Кобзарь, Good, Wilcox]
+
[Bonnini, Wilcox]
* [[Критерии знаков]]: одновыборочный, для связанных выборок.
* [[Критерии знаков]]: одновыборочный, для связанных выборок.
* [[Вариационный ряд]], ранги и связки.
* [[Вариационный ряд]], ранги и связки.
Строка 46: Строка 46:
* Перестановочные критерии. Проверка гипотез о положении (одновыборочный, для связанных выборок, для независимых выборок), проверка гипотезы о рассеивании.
* Перестановочные критерии. Проверка гипотез о положении (одновыборочный, для связанных выборок, для независимых выборок), проверка гипотезы о рассеивании.
* Двухвыборочные критерии согласия: Колмогорова-Смирнова, Крамера-фон Мизеса (Андерсона).
* Двухвыборочные критерии согласия: Колмогорова-Смирнова, Крамера-фон Мизеса (Андерсона).
 +
<!---
* [[Функция сдвига]] и доверительная лента для неё.
* [[Функция сдвига]] и доверительная лента для неё.
-
<!---* Элементы [[теория измерений|теории измерений]]: номинальные, порядковые и количественные переменные; инварианты. Разновидности [[Обобщённое среднее|средних]]: по Коши, по Колмогорову, мода, медиана. Среднее в порядковой шкале [Орлов, гл. 3]. Пример: маркетинговое исследование привлекательности продуктов (образовательных услуг); важность постановки вопросов при формировании анкет [Орлов, 229].
+
* Элементы [[теория измерений|теории измерений]]: номинальные, порядковые и количественные переменные; инварианты. Разновидности [[Обобщённое среднее|средних]]: по Коши, по Колмогорову, мода, медиана. Среднее в порядковой шкале [Орлов, гл. 3]. Пример: маркетинговое исследование привлекательности продуктов (образовательных услуг); важность постановки вопросов при формировании анкет [Орлов, 229].
* Доверительные интервалы для медианы (Уилкоксона-Мозеса) и сдвига (Уилкоксона-Тьюки).
* Доверительные интервалы для медианы (Уилкоксона-Мозеса) и сдвига (Уилкоксона-Тьюки).
* Множественные сравнения на основе рангов Фридмана.
* Множественные сравнения на основе рангов Фридмана.
Строка 59: Строка 60:
* [[FWER]], поправка Бонферрони.
* [[FWER]], поправка Бонферрони.
* Нисходящие процедуры множественной проверки: общий вид, метод Холма.
* Нисходящие процедуры множественной проверки: общий вид, метод Холма.
-
* Процедуры множественной проверки гипотез при наличии дополнительной информации о признаках: независимость, subset pivotality, positive orthant dependence.
+
* Процедуры множественной проверки гипотез при наличии дополнительной информации о признаках: независимость, subset pivotality, PRDS.
* Оценка числа верных нулевых гипотез и её применение.
* Оценка числа верных нулевых гипотез и её применение.
* [[FDR]], восходящие процедуры, методы Бенджамини-Хохберга и Бенджамини-Иекутиели.
* [[FDR]], восходящие процедуры, методы Бенджамини-Хохберга и Бенджамини-Иекутиели.
Строка 67: Строка 68:
=== Дисперсионный анализ (ANOVA) ===
=== Дисперсионный анализ (ANOVA) ===
[Tabachnick, Лагутин, Кобзарь]
[Tabachnick, Лагутин, Кобзарь]
-
<!---* Модели факторного эксперимента. Примеры: факторы, влияющие на успешность решения математических задач; факторы, влияющие на объёмы продаж.
+
* Однофакторная модель. Независимые выборки: критерии Фишера, [[критерий Краскела-Уоллиса|Краскела-Уоллиса]], [[критерий Джонкхиера|Джонкхиера]]. Связанные выборки: критерии Фишера, [[критерий Фридмана|Фридмана]] и [[критерий Пейджа|Пейджа]]. Предположение сферичности.
-
--->* Однофакторная модель. Независимые выборки: критерии Фишера, [[критерий Краскела-Уоллиса|Краскела-Уоллиса]], [[критерий Джонкхиера|Джонкхиера]]. Связанные выборки: критерии Фишера, [[критерий Фридмана|Фридмана]] и [[критерий Пейджа|Пейджа]]
+
* Модель со случайным эффектом, разделение дисперсии.
* Модель со случайным эффектом, разделение дисперсии.
-
* Модель с фиксированным эффектом, уточнение различий: методы LSD и HSD, критерий [[критерий Неменьи|Неменьи]].
+
* Модель с фиксированным эффектом, уточнение различий: методы LSD и HSD, критерии [[критерий Неменьи|Неменьи]] и [[критерий Даннета|Даннета]].
-
* Проверка гипотезы о равенстве дисперсий: критерии [[критерий Бартлета|Бартлета]] и [[критерий квадратов рангов|квадратов рангов]].
+
* Проверка гипотезы о равенстве дисперсий: критерии [[критерий Бартлета|Бартлета]] и [[критерий Флайнера-Киллиана|Флайнера-Киллиана]].
<!---* Общий случай модели с постоянными факторами, теорема Кокрена. --->
<!---* Общий случай модели с постоянными факторами, теорема Кокрена. --->
* Двухфакторная модель. Взаимодействие факторов, его интерпретация. [[Двухфакторный нормальный анализ]]. Иерархический дизайн.
* Двухфакторная модель. Взаимодействие факторов, его интерпретация. [[Двухфакторный нормальный анализ]]. Иерархический дизайн.
-
<!---* [[Двухфакторная непараметрическая модель]]: .Примеры: сравнение эффективности методов производства, агротехнических приёмов.
+
<!---* [[Ковариационный анализ]] (постановка задачи).--->
-
* [[Ковариационный анализ]] (постановка задачи).--->
+
[[Media:Psad_anova.pdf‎‎|Материалы занятия]]
[[Media:Psad_anova.pdf‎‎|Материалы занятия]]
Строка 85: Строка 84:
* [[Частная корреляция]], значимость коэффициента частной корреляции (критерий Стьюдента).
* [[Частная корреляция]], значимость коэффициента частной корреляции (критерий Стьюдента).
* [[Множественная корреляция]], значимость коэффициента множественной корреляции (критерий Фишера).
* [[Множественная корреляция]], значимость коэффициента множественной корреляции (критерий Фишера).
 +
* Анализ канонических корреляций. Значимость коэффициентов. Вспомогательные статистики и их интерпретация.
* [[Таблица сопряженности]] <tex>K_1\times K_2</tex>. Проверка гипотезы независимости категориальных величин с помощью критериев хи-квадрат и G-квадрат. Коэффициент V Крамера, коэффициент <tex>\gamma</tex> для порядковых величин.
* [[Таблица сопряженности]] <tex>K_1\times K_2</tex>. Проверка гипотезы независимости категориальных величин с помощью критериев хи-квадрат и G-квадрат. Коэффициент V Крамера, коэффициент <tex>\gamma</tex> для порядковых величин.
* [[Таблица сопряженности]] <tex>2\times 2</tex>. Проверка гипотезы независимости бинарных величин с помощью [[Точный тест Фишера|точного критерия Фишера]]. [[Корреляция Мэтьюса]].
* [[Таблица сопряженности]] <tex>2\times 2</tex>. Проверка гипотезы независимости бинарных величин с помощью [[Точный тест Фишера|точного критерия Фишера]]. [[Корреляция Мэтьюса]].
Строка 111: Строка 111:
=== Обобщения линейной регрессии ===
=== Обобщения линейной регрессии ===
-
[Hosmer]
+
[Olsson, Hosmer, Cameron]
-
* Постановка задачи [[Логистическая_регрессия|логистической регрессии]], повторяемый эксперимент с фиксированными уровнями фактора, неповторяемый эксперимент со случайными уровнями фактора. Логит, его интерпретация. Интерпретация коэффициентов логистической регрессии (бинарный, количественный признак).
+
* Обобщённые линейные модели. Связующая функция. Оценка параметров методом максимального правдоподобия.
-
* Оценка параметров модели методом максимального правдоподобия. Возможные причины отсутствия сходимости.
+
* Доверительные интервалы и оценка значимости коэффициентов, критерии Вальда и отношения правдоподобия.
-
* Анализ модели логистической регрессии: оценка значимости коэффициентов (критерии Вальда и отношения правдоподобия), построение доверительных интервалов. Оценка значимости категориальных предикторов. Проверка линейности логита по признаку. Признаки мультиколлинеарности. Остатки Пирсона, аналог расстояния Кука.
+
* Меры качества обобщённых линейных моделей: аномальность, информационные критерии.
-
* Содержательный отбор признаков.
+
* Постановка задачи [[Логистическая_регрессия|логистической регрессии]]. Логит, интерпретация коэффициентов логистической регрессии.
 +
* Проверка линейности логита: сглаженные диаграммы рассеяния, дробные полиномы.
* Классификация на основе логистической регрессии: чувствительность, специфичность, выбор порога.
* Классификация на основе логистической регрессии: чувствительность, специфичность, выбор порога.
-
[Cameron]
+
* Регрессия счётного признака. Пуассоновская модель.
-
* Регрессия натурального признака. Пуассоновская модель.
+
* Предположение о равенстве матожидания и дисперсии и его проверка. Отрицательная биномиальная модель. Устойчивая оценка дисперсии коэффициентов.
-
* Методы оценки дисперсии коэффициентов. Доверительные интервалы. Меры качества модели.
+
 
-
* Предположение о равенстве матожидания и дисперсии и его проверка. Отрицательная биномиальная и пороговая модели.
+
[[Media:Psad_otherreg.pdf‎‎|Материалы занятия]]
 +
<!---
[Hastie]
[Hastie]
* Проблема [[Мультиколлинеарность|мультиколлинеарности]]. Методы понижения размерности: [[ридж-регрессия]], [[лассо Тибширани]], [[эластичная сеть]]. Выбор параметра регуляризации.
* Проблема [[Мультиколлинеарность|мультиколлинеарности]]. Методы понижения размерности: [[ридж-регрессия]], [[лассо Тибширани]], [[эластичная сеть]]. Выбор параметра регуляризации.
-
Материалы занятий: [[Media:Psad_logreg.pdf‎‎|часть 1]], [[Media:Psad_otherreg.pdf‎‎|часть 2]]
 
-
<!---
 
=== Непараметрическая регрессия ===
=== Непараметрическая регрессия ===
* [[Непараметрическая регрессия]]: [[ядерное сглаживание]], формула Надарая-Ватсона. Разложение ошибки на [[Вариация и смещение|вариацию и смещение]]. Выбор ядра и ширины окна. Окна переменной ширины. Доверительный интервал прогнозного значения отклика. Проблема выбросов, [[Алгоритм LOWESS]].
* [[Непараметрическая регрессия]]: [[ядерное сглаживание]], формула Надарая-Ватсона. Разложение ошибки на [[Вариация и смещение|вариацию и смещение]]. Выбор ядра и ширины окна. Окна переменной ширины. Доверительный интервал прогнозного значения отклика. Проблема выбросов, [[Алгоритм LOWESS]].
Строка 141: Строка 141:
=== Анализ временных рядов ===
=== Анализ временных рядов ===
-
[Hyndman, Лукашин]
+
[Hyndman]
* [[Временной ряд]]. Основные компоненты эконометрических временных рядов: [[тренд]], [[сезонность]]. Календарные эффекты.
* [[Временной ряд]]. Основные компоненты эконометрических временных рядов: [[тренд]], [[сезонность]]. Календарные эффекты.
* Анализ остатков. [[Автокорреляционная функция]]. [[Коррелограмма]] и её интерпретация. Проверка гипотезы о равенстве нулю автокорреляции и группы автокорреляций ([[критерий Льюнга-Бокса]]). Проверка гипотезы стационарности ([[критерий KPSS]]).
* Анализ остатков. [[Автокорреляционная функция]]. [[Коррелограмма]] и её интерпретация. Проверка гипотезы о равенстве нулю автокорреляции и группы автокорреляций ([[критерий Льюнга-Бокса]]). Проверка гипотезы стационарности ([[критерий KPSS]]).
-
* Меры качества прогнозов, примеры оценок. Информационные критерии. [[U-коэффициент Тейла]].
 
-
* Сравнение качества двух прогнозов. Непараметрические критерии, [[критерий Диболда-Мариано]], его модификация для маленьких выборок.
 
-
* Сравнение качества нескольких прогнозов. [[Reality check Уайта]], модификация Романо-Вольфа.
 
-
* Обнаружение структурных изменений. [[Критерий Чоу]].
 
-
* Прогнозирование методами экспоненциального сглаживания. Простое экспоненциальное сглаживание Брауна, методы Хольта и Хольта-Уинтерса. Таксономия моделей ETS.
 
* Модели AR, MA, ARMA. [[Частичная автокорреляция]]. Подбор параметров модели по коррелограммам. Переход к ряду разностей, модель ARIMA.
* Модели AR, MA, ARMA. [[Частичная автокорреляция]]. Подбор параметров модели по коррелограммам. Переход к ряду разностей, модель ARIMA.
* Сезонные эффекты и модели их учёта: SARMA, SARIMA.
* Сезонные эффекты и модели их учёта: SARMA, SARIMA.
* Учёт дополнительных признаков, модель regARIMA. Схема настройки параметров модели.
* Учёт дополнительных признаков, модель regARIMA. Схема настройки параметров модели.
 +
* Прогнозирование методами экспоненциального сглаживания. Простое экспоненциальное сглаживание Брауна, методы Хольта и Хольта-Уинтерса. Таксономия моделей ETS.
 +
* Меры качества прогнозов, примеры оценок. Информационные критерии. [[U-коэффициент Тейла]].
 +
* Сравнение качества двух прогнозов. Непараметрические критерии, [[критерий Диболда-Мариано]], его модификация для маленьких выборок.
 +
<!--* Сравнение качества нескольких прогнозов. [[Reality check Уайта]], модификация Романо-Вольфа.-->
 +
* Обнаружение структурных изменений. [[Критерий Чоу]].
* [[Причинность по Грейнджеру]]. [[Критерий Грейнджера]] (для двух рядов, для множества рядов).
* [[Причинность по Грейнджеру]]. [[Критерий Грейнджера]] (для двух рядов, для множества рядов).
* Адаптивная [[Адаптивная селекция моделей прогнозирования|селекция]] и [[Адаптивная композиция моделей прогнозирования|композиция]] моделей прогнозирования. «Forecast combination puzzle». Агрегирующий алгоритм Вовка.
* Адаптивная [[Адаптивная селекция моделей прогнозирования|селекция]] и [[Адаптивная композиция моделей прогнозирования|композиция]] моделей прогнозирования. «Forecast combination puzzle». Агрегирующий алгоритм Вовка.
Строка 157: Строка 157:
* Сложные сезонности в моделях экспоненциального сглаживания (TBATS) и авторегрессии.
* Сложные сезонности в моделях экспоненциального сглаживания (TBATS) и авторегрессии.
-
Материалы занятий: [[Media:Ps_ts_ets.pdf‎‎‎|часть 1]], [[Media:Psad_ts_arima.pdf‎‎|часть 2]], [[Media:Psad_ts_other.pdf‎‎|часть 3]].
+
Материалы занятий: [[Media:Psad_ts_arima.pdf‎‎‎|часть 1]], [[Media:Psad_ts_ets.pdf‎‎|часть 2]].
=== Последовательный анализ ===
=== Последовательный анализ ===
Строка 168: Строка 168:
[[Media:Psad_seq.pdf‎‎|Материалы занятия]]
[[Media:Psad_seq.pdf‎‎|Материалы занятия]]
-
=== Анализ выживаемости ===
+
=== Анализ причинно-следственных связей ===
-
* [[Анализ выживаемости]]. [[Функция выживаемости]] и [[функция интенсивности рисков]]. [[Процедура Каплана-Мейера]]. Доверительный интервал выживаемости.
+
[Pearl]
-
* Сравнение двух функций выживаемости: [[логранговый критерий]], [[критерий Гехана]].
+
* Неразрешимость парадокса Симпсона в рамках классической статистики.
 +
* Причинные графы, цепочки, вилки, коллайдеры. D-разделимость.
 +
* Интервенции. Оценка эффекта по обзервационным данным. Хирургия графа и формула корректировки (adjustment formula).
 +
* Правило причинного эффекта. Варианты для отсутствия родителей: правило задней двери, правило передней двери.
 +
* Propensity score, обратное вероятностное взвешивание.
 +
* Графы в линейных моделях. Связь со структурными уравнениями.
 +
<!---
=== Анализ панельных данных ===
=== Анализ панельных данных ===
-
[Магнус]
+
[Batalgi]
* Примеры эконометрических задач: анализ стран, фирм, домашних хозяйств, телезрителей.
* Примеры эконометрических задач: анализ стран, фирм, домашних хозяйств, телезрителей.
-
* [[Объединённая модель панельных данных]].
+
* Объединённая регрессионная модель панельных данных.
-
* [[Модель панельных данных с фиксированными эффектами]].
+
* Модели с переменным свободным членом: одно- и двухкомпонентная ошибка. Фиксированные и случайные эффекты.
 +
* Модели с переменными угловыми коэффициентами. Полная статическая модель, проверка возможности её упрощения.
 +
---><!--- * [[Модель панельных данных с фиксированными эффектами]].
* [[Модель панельных данных со случайными эффектами]].
* [[Модель панельных данных со случайными эффектами]].
* [[Модель панельных данных с временны́ми эффектами]].
* [[Модель панельных данных с временны́ми эффектами]].
* [[Модель несвязанных регрессий]].
* [[Модель несвязанных регрессий]].
* Проблема выбора модели: F-тест Фишера, [[критерий множителей Лагранжа]], [[критерий Хаусмана]].
* Проблема выбора модели: F-тест Фишера, [[критерий множителей Лагранжа]], [[критерий Хаусмана]].
-
* [[Ротационная панель]].
+
* [[Ротационная панель]].---><!---
-
<!---
+
 
 +
[[Media:Psad_panel.pdf‎‎|Материалы занятия]]
 +
 
 +
=== Анализ выживаемости ===
 +
* [[Анализ выживаемости]]. [[Функция выживаемости]] и [[функция интенсивности рисков]]. [[Процедура Каплана-Мейера]]. Доверительный интервал выживаемости.
 +
* Сравнение двух функций выживаемости: [[логранговый критерий]], [[критерий Гехана]].
=== Выборочный анализ ===
=== Выборочный анализ ===
Строка 205: Строка 218:
* [[Интегральный индикатор]]. Примеры прикладных задач. Линейные и ранговые шкалы. Методы построения интегрального индикатора «без учителя» [Strijov, 2003]. Устойчивые интегральные индикаторы [Стрижов, 2007].
* [[Интегральный индикатор]]. Примеры прикладных задач. Линейные и ранговые шкалы. Методы построения интегрального индикатора «без учителя» [Strijov, 2003]. Устойчивые интегральные индикаторы [Стрижов, 2007].
* [[Экспертные оценки]] [Литвак, Лапач, 353]. [[Матрица парных сравнений]]. [[Экспертно-статистический метод]] [Айвазян, том 2]. [[Согласование экспертных оценок]] [Стрижов, 2006].
* [[Экспертные оценки]] [Литвак, Лапач, 353]. [[Матрица парных сравнений]]. [[Экспертно-статистический метод]] [Айвазян, том 2]. [[Согласование экспертных оценок]] [Стрижов, 2006].
-
 
-
* Вычисление доверительных интервалов. [[Прогнозирование плотности]].
 
--->
--->
== Литература ==
== Литература ==
-
<!---# ''Лапач С.Н. , Чубенко А.В., Бабич П.Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002. --->
 
# ''Вальд, А.'' Последовательный анализ. — М.: Физматлит, 1960.
# ''Вальд, А.'' Последовательный анализ. — М.: Физматлит, 1960.
# ''Лагутин, М.Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
# ''Лагутин, М.Б.'' Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
-
# ''Лукашин, Ю.П.'' Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
 
# ''Кобзарь, А.И.'' Прикладная математическая статистика. — М.: Физматлит, 2006.
# ''Кобзарь, А.И.'' Прикладная математическая статистика. — М.: Физматлит, 2006.
-
# ''Магнус, Я.Р., Катышев, П.К., Пересецкий, А.А.'' Эконометрика. Начальный курс: Учеб. — 7-е изд., испр. — М.: Дело, 2005.
 
# ''Agresti, A.'' Categorical Data Analysis. — Hoboken: John Wiley & Sons, 2013.
# ''Agresti, A.'' Categorical Data Analysis. — Hoboken: John Wiley & Sons, 2013.
 +
# ''Bonnini, S., Corain, L., Marozzi, M., Salmaso S.'' Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R. — Hoboken: John Wiley & Sons, 2014.
# ''Bretz, F., Hothorn, T., Westfall, P.'' Multiple Comparisons Using R. — Boca Raton: Chapman and Hall/CRC, 2010.
# ''Bretz, F., Hothorn, T., Westfall, P.'' Multiple Comparisons Using R. — Boca Raton: Chapman and Hall/CRC, 2010.
# ''Cameron, A.A., Trivedi, P.K.'' Regression Analysis of Count Data. — Cambridge: Cambridge University Press, 2013.
# ''Cameron, A.A., Trivedi, P.K.'' Regression Analysis of Count Data. — Cambridge: Cambridge University Press, 2013.
Строка 223: Строка 232:
# {{Публикация:Hastie 2001 The Elements of Statistical Learning}}
# {{Публикация:Hastie 2001 The Elements of Statistical Learning}}
# ''Hosmer, D.W., Lemeshow S., Sturdivant, R.X.'' Applied Logistic Regression. — Hoboken: John Wiley & Sons, 2013.
# ''Hosmer, D.W., Lemeshow S., Sturdivant, R.X.'' Applied Logistic Regression. — Hoboken: John Wiley & Sons, 2013.
-
# ''Hyndman, R.J., Athanasopoulos G.'' Forecasting: principles and practice. — OTexts, 2013. https://www.otexts.org/book/fpp
+
# ''Hyndman, R.J., Athanasopoulos G.'' Forecasting: principles and practice. — OTexts, 2015. https://www.otexts.org/book/fpp
# ''Kanji, G.K.'' 100 statistical tests. — London: SAGE Publications, 2006.
# ''Kanji, G.K.'' 100 statistical tests. — London: SAGE Publications, 2006.
# ''Mukhopadhyay, N., de Silva, B. M.'' Sequential methods and their applications. — Boca Raton: Chapman and Hall/CRC, 2009.
# ''Mukhopadhyay, N., de Silva, B. M.'' Sequential methods and their applications. — Boca Raton: Chapman and Hall/CRC, 2009.
 +
# ''Olsson, U.'' Generalized Linear Models: An Applied Approach. — Lund: Studentlitteratur, 2004.
 +
# ''Pearl J., Glymour M., Jewell N.P.'' Causal Inference in Statistics: A Primer. — Chichester: John Wiley & Sons, 2016.
# ''Tabachnick, B.G., Fidell, L.S.'' Using Multivariate Statistics. — Boston: Pearson Education, 2012.
# ''Tabachnick, B.G., Fidell, L.S.'' Using Multivariate Statistics. — Boston: Pearson Education, 2012.
-
# ''Wilcox, R.R.'' Introduction to Robust Estimation and Hypothesis Testing. — Academic Press, 2012.
 
# ''Wooldridge, J.'' Introductory Econometrics: A Modern Approach. — Mason: South-Western Cengage Learning, 2013.
# ''Wooldridge, J.'' Introductory Econometrics: A Modern Approach. — Mason: South-Western Cengage Learning, 2013.
<!---
<!---
 +
# ''Baltagi, B.H.'' Econometric analysis of panel data. — Chichester: John Wiley & Sons, 2005.
 +
# ''Wilcox, R.R.'' Introduction to Robust Estimation and Hypothesis Testing. — Academic Press, 2012.
 +
# ''Лапач С.Н. , Чубенко А.В., Бабич П.Н.'' Статистика в науке и бизнесе. — Киев: Морион, 2002.
 +
# ''Лукашин, Ю.П.'' Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
 +
# ''Магнус, Я.Р., Катышев, П.К., Пересецкий, А.А.'' Эконометрика. Начальный курс: Учеб. — 7-е изд., испр. — М.: Дело, 2005.
# ''Дрейпер, Н.Р., Смит Г.'' Прикладной регрессионный анализ. — М.: Издательский дом "Вильямс", 2007.
# ''Дрейпер, Н.Р., Смит Г.'' Прикладной регрессионный анализ. — М.: Издательский дом "Вильямс", 2007.
# ''Kirchgassner, G., Wolters, J., Hassler, U.'' Introduction to modern time series analysis. — Heidelberg: Springer, 2013.
# ''Kirchgassner, G., Wolters, J., Hassler, U.'' Introduction to modern time series analysis. — Heidelberg: Springer, 2013.
Строка 238: Строка 253:
# ''Айвазян С. А.'' Прикладная статистика. Том 2. Основы эконометрики. — М.: Юнити, 2001.
# ''Айвазян С. А.'' Прикладная статистика. Том 2. Основы эконометрики. — М.: Юнити, 2001.
# ''Вучков И., Бояджиева А., Солаков Е.'' Прикладной линейный регрессионный анализ. — М.: Финансы и статистика, 1987.
# ''Вучков И., Бояджиева А., Солаков Е.'' Прикладной линейный регрессионный анализ. — М.: Финансы и статистика, 1987.
-
#''Strijov, V., Shakin, V.'' [http://strijov.com/papers/10-v_strijov.pdf Index construction: the expert-statistical method]. // Environmental research, engineering and management 2003. No.4 (26), P.51-55.
+
# ''Strijov, V., Shakin, V.'' [http://strijov.com/papers/10-v_strijov.pdf Index construction: the expert-statistical method]. // Environmental research, engineering and management 2003. No.4 (26), P.51-55.
-
#''Стрижов В. В., Казакова Т. В.'' [http://strijov.com/papers/stable_idx4zavlab_after_recenz.pdf Устойчивые интегральные индикаторы с выбором опорного множества описаний]. // Заводская лаборатория. Диагностика материалов. 2007 (7). C. 72-76.
+
# ''Стрижов В. В., Казакова Т. В.'' [http://strijov.com/papers/stable_idx4zavlab_after_recenz.pdf Устойчивые интегральные индикаторы с выбором опорного множества описаний]. // Заводская лаборатория. Диагностика материалов. 2007 (7). C. 72-76.
-
#''Литвак Б. Г.'' Экспертная информация: Методы получения и анализа. – М.: Радио и связь, 1982. – 184 с.
+
# ''Литвак Б. Г.'' Экспертная информация: Методы получения и анализа. – М.: Радио и связь, 1982. – 184 с.
-
#''Стрижов В. В.'' [http://strijov.com/papers/strijov06precise.pdf Уточнение экспертных оценок с помощью измеряемых данных]. // Заводская лаборатория. Диагностика материалов. 2006 (7). С.59-64.
+
# ''Стрижов В. В.'' [http://strijov.com/papers/strijov06precise.pdf Уточнение экспертных оценок с помощью измеряемых данных]. // Заводская лаборатория. Диагностика материалов. 2006 (7). С.59-64.
# ''Тюрин Ю. Н., Макаров А. А.'' Анализ данных на компьютере. — М.: Инфра-М, 2003.
# ''Тюрин Ю. Н., Макаров А. А.'' Анализ данных на компьютере. — М.: Инфра-М, 2003.
-
== Ссылки ==
+
== Подстраницы ==
-
* [http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%B3%D0%B8%D0%BF%D0%BE%D1%82%D0%B5%D0%B7%D0%B0 Википедия: Проверка статистических гипотез]
+
 
-
* [http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D0%B0%D1%82%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%BA%D1%80%D0%B8%D1%82%D0%B5%D1%80%D0%B8%D0%B9 Википедия: Статистический критерий]
+
-
* [http://www.statsoft.ru/home/portal/default.asp Статистический Портал StatSoft]
+
-
* [http://www.statsoft.ru/home/textbook/glossary Электронный статистический словарь StatSoft]
+
--->
--->
-
== Подстраницы ==
 
-
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015|Практические задания для студентов каф. ММП ВМК (2015 год)]]
 
-
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2015 год)]]
 
-
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2014|Практические задания для студентов каф. ММП ВМК (2014 год)]]
 
[[Категория:Учебные курсы]]
[[Категория:Учебные курсы]]

Текущая версия

Содержание

Курс знакомит студентов с основными задачами и методами прикладной статистики.

Цели курса — связать теорию и практику, научить студентов «видеть» статистические задачи в различных предметных областях и правильно применять методы прикладной статистики, показать на практических примерах возможности и ограничения статистических методов. Курс имеет скорее методологическую, чем математическую направленность и не содержит доказательств теорем.

Каждый метод описывается по единой схеме:

  • постановка задачи;
  • примеры прикладных задач из области биологии, экономики, социологии, производства, медицины;
  • базовые предположения и границы применимости;
  • описание метода (для методов проверки статистических гипотез: нулевая гипотеза и альтернативы, статистика, её нулевое распределение);
  • достоинства, недостатки, ограничения, «подводные камни»;
  • сравнение с другими методами.

Курс читается студентам 4 курса кафедры математических методов прогнозирования ВМиК МГУ с 2007 года и студентам 4 курса факультета управления и прикладной математики МФТИ с 2011 года. Предполагается, что студенты уже прослушали курсы теории вероятностей и математической статистики.

Программа курса

Введение

Обзор необходимых сведений из теории вероятностей и математической статистики.

Материалы занятия

Параметрическая проверка гипотез

[Kanji, Кобзарь]

  • Критерии нормальности: критерий хи-квадрат (Пирсона), критерий Шапиро-Уилка, критерии, основанные на различиях между эмпирической и теоретической функциями распределения, критерий Колмогорова-Смирнова (Лиллиефорса). Упрощённая проверка нормальности по асимметрии и эксцессу: критерий Харке-Бера.
  • Нормальные параметрические критерии для проверки гипотез: гипотезы о положении, гипотезы о рассеивании.
  • Гипотезы о средних: t- и z-критерии Стьюдента для одной и двух выборок, связанные выборки
  • Гипотезы о дисперсиях: критерии хи-квадрат и Фишера.
  • Гипотезы о значениях параметра распределения Бернулли: сравнение значения параметра с заданным, сравнение параметров распределений двух выборок (случаи связанных и независимых выборок).
  • Доверительный интервал для параметра распределения Бернулли: Вальда, Уилсона. Доверительные интервалы Уилсона для разности параметров двух выборок.

Материалы занятия

Непараметрическая проверка гипотез

[Bonnini, Wilcox]

Материалы занятия

Множественная проверка гипотез

[Bretz, Dickhaus]

  • Множественная проверка гипотез. Примеры задач. Меры числа ошибок первого рода.
  • FWER, поправка Бонферрони.
  • Нисходящие процедуры множественной проверки: общий вид, метод Холма.
  • Процедуры множественной проверки гипотез при наличии дополнительной информации о признаках: независимость, subset pivotality, PRDS.
  • Оценка числа верных нулевых гипотез и её применение.
  • FDR, восходящие процедуры, методы Бенджамини-Хохберга и Бенджамини-Иекутиели.

Материалы занятия

Дисперсионный анализ (ANOVA)

[Tabachnick, Лагутин, Кобзарь]

Материалы занятия

Анализ зависимостей

[Agresti, Лагутин].

Материалы занятия

Линейный регрессионный анализ

[Wooldridge]

Материалы занятия

Обобщения линейной регрессии

[Olsson, Hosmer, Cameron]

  • Обобщённые линейные модели. Связующая функция. Оценка параметров методом максимального правдоподобия.
  • Доверительные интервалы и оценка значимости коэффициентов, критерии Вальда и отношения правдоподобия.
  • Меры качества обобщённых линейных моделей: аномальность, информационные критерии.
  • Постановка задачи логистической регрессии. Логит, интерпретация коэффициентов логистической регрессии.
  • Проверка линейности логита: сглаженные диаграммы рассеяния, дробные полиномы.
  • Классификация на основе логистической регрессии: чувствительность, специфичность, выбор порога.
  • Регрессия счётного признака. Пуассоновская модель.
  • Предположение о равенстве матожидания и дисперсии и его проверка. Отрицательная биномиальная модель. Устойчивая оценка дисперсии коэффициентов.

Материалы занятия

Анализ временных рядов

[Hyndman]

  • Временной ряд. Основные компоненты эконометрических временных рядов: тренд, сезонность. Календарные эффекты.
  • Анализ остатков. Автокорреляционная функция. Коррелограмма и её интерпретация. Проверка гипотезы о равенстве нулю автокорреляции и группы автокорреляций (критерий Льюнга-Бокса). Проверка гипотезы стационарности (критерий KPSS).
  • Модели AR, MA, ARMA. Частичная автокорреляция. Подбор параметров модели по коррелограммам. Переход к ряду разностей, модель ARIMA.
  • Сезонные эффекты и модели их учёта: SARMA, SARIMA.
  • Учёт дополнительных признаков, модель regARIMA. Схема настройки параметров модели.
  • Прогнозирование методами экспоненциального сглаживания. Простое экспоненциальное сглаживание Брауна, методы Хольта и Хольта-Уинтерса. Таксономия моделей ETS.
  • Меры качества прогнозов, примеры оценок. Информационные критерии. U-коэффициент Тейла.
  • Сравнение качества двух прогнозов. Непараметрические критерии, критерий Диболда-Мариано, его модификация для маленьких выборок.
  • Обнаружение структурных изменений. Критерий Чоу.
  • Причинность по Грейнджеру. Критерий Грейнджера (для двух рядов, для множества рядов).
  • Адаптивная селекция и композиция моделей прогнозирования. «Forecast combination puzzle». Агрегирующий алгоритм Вовка.
  • Прогнозирование иерархических совокупностей рядов.
  • Сложные сезонности в моделях экспоненциального сглаживания (TBATS) и авторегрессии.

Материалы занятий: часть 1, часть 2.

Последовательный анализ

[Вальд, Mukhopadhyay]

  • Применение в задачах проверки гипотез о значениях параметра биномиального распределения: сравнение значения с заданным, сравнение двух значений.
  • Применение в задачах проверки гипотез о значениях параметров нормального распределения: сравнение значения среднего с заданными (симметричный и несимметричный варианты), сравнение значения дисперсии с заданным.
  • Последовательные доверительные интервалы для среднего нормальной совокупности с неизвестной дисперсией (двухэтапная, последовательная процедуры). Процедуры для разности средних двух нормальных совокупностей, случаи равных и неравных дисперсий.
  • Непараметрические последовательные доверительные интервалы для среднего и медианы.

Материалы занятия

Анализ причинно-следственных связей

[Pearl]

  • Неразрешимость парадокса Симпсона в рамках классической статистики.
  • Причинные графы, цепочки, вилки, коллайдеры. D-разделимость.
  • Интервенции. Оценка эффекта по обзервационным данным. Хирургия графа и формула корректировки (adjustment formula).
  • Правило причинного эффекта. Варианты для отсутствия родителей: правило задней двери, правило передней двери.
  • Propensity score, обратное вероятностное взвешивание.
  • Графы в линейных моделях. Связь со структурными уравнениями.


Литература

  1. Вальд, А. Последовательный анализ. — М.: Физматлит, 1960.
  2. Лагутин, М.Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
  3. Кобзарь, А.И. Прикладная математическая статистика. — М.: Физматлит, 2006.
  4. Agresti, A. Categorical Data Analysis. — Hoboken: John Wiley & Sons, 2013.
  5. Bonnini, S., Corain, L., Marozzi, M., Salmaso S. Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R. — Hoboken: John Wiley & Sons, 2014.
  6. Bretz, F., Hothorn, T., Westfall, P. Multiple Comparisons Using R. — Boca Raton: Chapman and Hall/CRC, 2010.
  7. Cameron, A.A., Trivedi, P.K. Regression Analysis of Count Data. — Cambridge: Cambridge University Press, 2013.
  8. Dickhaus, T. Simultaneous Statistical Inference With Applications in the Life Sciences. — Heidelberg: Springer, 2014.
  9. Good, P. Permutation, Parametric and Bootstrap Tests of Hypotheses: A Practical Guide to Resampling Methods for Testing Hypotheses. — New York: Springer, 2005.
  10. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning, 2nd edition. — Springer, 2009. — 533 p.  (подробнее)
  11. Hosmer, D.W., Lemeshow S., Sturdivant, R.X. Applied Logistic Regression. — Hoboken: John Wiley & Sons, 2013.
  12. Hyndman, R.J., Athanasopoulos G. Forecasting: principles and practice. — OTexts, 2015. https://www.otexts.org/book/fpp
  13. Kanji, G.K. 100 statistical tests. — London: SAGE Publications, 2006.
  14. Mukhopadhyay, N., de Silva, B. M. Sequential methods and their applications. — Boca Raton: Chapman and Hall/CRC, 2009.
  15. Olsson, U. Generalized Linear Models: An Applied Approach. — Lund: Studentlitteratur, 2004.
  16. Pearl J., Glymour M., Jewell N.P. Causal Inference in Statistics: A Primer. — Chichester: John Wiley & Sons, 2016.
  17. Tabachnick, B.G., Fidell, L.S. Using Multivariate Statistics. — Boston: Pearson Education, 2012.
  18. Wooldridge, J. Introductory Econometrics: A Modern Approach. — Mason: South-Western Cengage Learning, 2013.
Личные инструменты