Статистический анализ данных (курс лекций, К.В.Воронцов)

Материал из MachineLearning.

(Различия между версиями)
Перейти к: навигация, поиск
м (Дисперсионный анализ (ANOVA))
м (Дисперсионный анализ (ANOVA))
Строка 58: Строка 58:
* Однофакторная модель: критерии Фишера, [[критерий Краскела-Уоллиса|Краскела-Уоллиса]], [[критерий Джонкхиера|Джонкхиера]].
* Однофакторная модель: критерии Фишера, [[критерий Краскела-Уоллиса|Краскела-Уоллиса]], [[критерий Джонкхиера|Джонкхиера]].
* Модель со случайным эффектом, разделение дисперсии.
* Модель со случайным эффектом, разделение дисперсии.
-
* Модель с фиксированным эффектом, уточнение различий: методы LSD и HSD, критерий Неменьи.
+
* Модель с фиксированным эффектом, уточнение различий: методы LSD и HSD, критерий [[критерий Неменьи|Неменьи]].
* Проверка гипотезы о равенстве дисперсий: критерии [[критерий Бартлета|Бартлета]] и [[критерий квадратов рангов|квадратов рангов]].
* Проверка гипотезы о равенстве дисперсий: критерии [[критерий Бартлета|Бартлета]] и [[критерий квадратов рангов|квадратов рангов]].
<!---* Общий случай модели с постоянными факторами, теорема Кокрена. --->
<!---* Общий случай модели с постоянными факторами, теорема Кокрена. --->

Версия 10:25, 27 сентября 2013

Содержание

Курс знакомит студентов с основными задачами и методами прикладной статистики.

Цели курса — связать теорию и практику, научить студентов «видеть» статистические задачи в различных предметных областях и правильно применять методы прикладной статистики, показать на практических примерах возможности и ограничения статистических методов. Курс имеет скорее методологическую, чем математическую направленность и не содержит доказательств теорем.

Каждый метод описывается по единой схеме:

  • постановка задачи;
  • примеры прикладных задач из области экономики, социологии, производства, медицины;
  • базовые предположения и границы применимости;
  • описание метода (для методов проверки статистических гипотез: нулевая гипотеза и альтернативы, статистика, её функция распределения с эскизом графика, критическая область);
  • достоинства, недостатки, ограничения, «подводные камни»;
  • сравнение с другими методами.

Курс читается студентам 5 курса кафедры Математические методы прогнозирования ВМиК МГУ, начиная с 2007 года. Предполагается, что студенты уже прослушали курсы теории вероятностей и математической статистики, знакомы с элементами дискриминантного, факторного и кластерного анализа (по кафедральному курсу «Математические методы распознавания образов»), регрессионного анализа и анализа временных рядов (по кафедральному курсу ММП).

Программа курса

Введение

Обзор необходимых сведений из теории вероятностей и математической статистики.

Материалы занятия

Параметрическая проверка гипотез

[Kanji]

Материалы занятия

Непараметрическая проверка гипотез

[Kanji, Good]

Материалы занятия

Дисперсионный анализ (ANOVA)

[Лапач, 193].

Материалы занятия

Корреляционный анализ

[Лапач, 174, 204, 316, Лагутин, Т2:174].

Материалы занятия

Множественная проверка гипотез

[Bretz]

  • Множественная проверка гипотез. Примеры задач. Меры числа ошибок первого рода.
  • FWER, поправка Бонферрони.
  • Нисходящие процедуры множественной проверки: общий вид, метод Холма.
  • Процедуры множественной проверки гипотез при наличии дополнительной информации о признаках: независимость, положительная регрессионная зависимость, subset pivotality.
  • FDR, методы Бенджамини, двухэтапные модификации.

Материалы занятия

Линейный регрессионный анализ

[Дрейпер, Wooldridge]

  • Многомерная линейная регрессия. Примеры прикладных задач. Метод наименьших квадратов.
  • МНК-решение и его запись через сингулярное разложение. Несимметричность решения задачи одномерной регрессии относительно признака и отклика, связь с коэффициентом корреляции. Остаточная сумма квадратов (RSS). Коэффициент детерминации
  • Предположения Гаусса-Маркова. Статистические свойства МНК-оценок в отсутствие предположения нормальности.
  • Факторы, влияющие на дисперсию оценок коэффициентов модели. Мультиколлинеарность.
  • Кодирование нечисловых признаков, фиктивные переменные. Dummy- и deviation-кодирование.
  • Статистические свойства МНК-оценок при добавлении предположения нормальности. Доверительные интервалы для дисперсии шума, коэффициентов регрессии, прогнозируемого значения отклика, доверительная лента для прогнозируемого значения отклика при всех значениях признака.
  • Анализ структуры линейной регрессионной модели. Значимость коэффициентов линейной регрессии: проверка равенства коэффициентов нулю и константе, вложенные модели линейной регрессии, критерий Фишера, запись критерия Фишера через коэффициент детерминации. Связь между критериями Фишера и Стьюдента. Пошаговая регрессия. Эксперимент Фридмана.
  • Анализ регрессионных остатков: визуальный анализ, проверка гипотез несмещённости, гомоскедастичности (критерии Бройша-Пагана) или некоррелированности остатков с признаками, их квадратами и попарными интеракциями (критерии Уайта и Вулдриджа), некоррелированности (критерии Вальда-Вольфовица и Дарбина-Уотсона), нормальности.
  • Метод Бокса-Кокса для преобразования отклика. Доверительный интервал для параметра метода.
  • Сравнение невложенных моделей: приведённый коэффициент детерминации, критерий Давидсона-Маккиннона.
  • Проверка общей линейной гипотезы.
  • Обработка пропусков и выбросов. Расстояние Кука.
  • Проблема мультиколлинеарности. Методы понижения размерности: ридж-регрессия, лассо Тибширани. Выбор параметра регуляризации.
  • Нелинейная регрессия. Построение совместной доверительной области для параметров модели. Приближённая проверка адекватности модели по чистой ошибке.

Материалы занятий: часть 1, часть 2, пример решения задачи.

Логистическая регрессия

[Hosmer]

  • Постановка задачи логистической регрессии, повторяемый эксперимент с фиксированными уровнями фактора, неповторяемый эксперимент со случайными уровнями фактора. Логит, его интерпретация. Интерпретация коэффициентов логистической регрессии (бинарный, категориальный, количественный признак).
  • Оценка параметров модели методом максимального правдоподобия. Возможные причины отсутствия сходимости.
  • Анализ модели логистической регрессии: оценка значимости коэффициентов (критерий Вальда), проверка адекватности модели (критерии хи-квадрат, D-квадрат, Хосмера-Лемешева, аналог коэффициента детерминации), сравнение вложенных моделей (D-критерий), построение доверительных интервалов для вероятности события при заданном значении признаков, остатки Пирсона, признаки мультиколлинеарности.
  • Классификация на основе логистической регрессии: чувствительность, специфичность, выбор порога.

Непараметрическая регрессия

  • Непараметрическая регрессия: ядерное сглаживание, формула Надарая-Ватсона. Разложение ошибки на вариацию и смещение. Выбор ядра и ширины окна. Окна переменной ширины. Доверительный интервал прогнозного значения отклика. Проблема выбросов, Алгоритм LOWESS.
  • Совмещение многомерной линейной регрессии и одномерного сглаживания: метод настройки с возвращениями (backfitting).
  • Примеры прикладных задач: анализ стиля управления инвестиционным портфелем, анализ деятельности паевых инвестиционных фондов.
  • Регуляризация коэффициентов регрессии, медленно изменяющихся во времени.

Анализ временных рядов

[Лукашин]

Материалы семинара по теме

Адаптивные методы прогнозирования

[Лукашин]

Последовательный анализ Вальда

[Вальд]

  • Применение в задачах проверки гипотез о значениях параметра биномиального распределения: сравнение значения с заданным, сравнение двух значений.
  • Применение в задачах проверки гипотез о значениях параметров нормального распределения: сравнение значения среднего с заданными (симметричный и несимметричный варианты), сравнение значения дисперсии с заданным.

Конспект лекции

Анализ выживаемости

Анализ панельных данных

[Магнус]


Литература

  1. Лапач С. Н. , Чубенко А. В., Бабич П. Н. Статистика в науке и бизнесе. — Киев: Морион, 2002.
  2. Лагутин М. Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
  3. Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
  4. Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. Начальный курс: Учеб. — 7-е изд., испр. — М.: Дело, 2005.
  5. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
  6. Орлов А. И. Эконометрика. — М.: Экзамен, 2003.
  7. Айвазян С. А., Мхитарян В. С. Прикладная статистика. Том 1. Теория вероятностей и прикладная статистика. — М.: Юнити, 2001.
  8. Айвазян С. А. Прикладная статистика. Том 2. Основы эконометрики. — М.: Юнити, 2001.
  9. Вучков И., Бояджиева А., Солаков Е. Прикладной линейный регрессионный анализ. — М.: Финансы и статистика, 1987.
  10. Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning, 2nd edition. — Springer, 2009. — 533 p.  (подробнее)
  11. Kanji G. K. 100 statistical tests. — London: Thousand Oaks: New Dehli: SAGE Publications, 2006.
  12. Good P. Permutation, Parametric and Bootstrap Tests of Hypotheses: A Practical Guide to Resampling Methods for Testing Hypotheses. — New York: Springer, 2005.
  13. Bretz F., Hothorn T., Westfall P. Multiple Comparisons Using R. — Boca Raton: Chapman and Hall/CRC, 2010.
  14. Дрейпер Н. Р., Смит Г. Прикладной регрессионный анализ. — М.: Издательский дом "Вильямс", 2007.
  15. Wooldridge J. Introductory Econometrics: A Modern Approach. — Mason: South-Western Cengage Learning, 2009.
  16. Hosmer D. W., Lemeshow S. Applied Logistic Regression. — New York: John Wiley & Sons, 2000.
  17. Вальд А. Последовательный анализ. - М.: Физматлит, 1960.


Ссылки


Подстраницы

Личные инструменты