Статистический анализ данных (курс лекций, К.В.Воронцов)
Материал из MachineLearning.
м (→Параметрическая проверка гипотез) |
м |
||
Строка 254: | Строка 254: | ||
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015|Практические задания для студентов каф. ММП ВМК (2015 год)]] | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015|Практические задания для студентов каф. ММП ВМК (2015 год)]] | ||
* [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2015 год)]] | * [[Статистический анализ данных (курс лекций, К.В.Воронцов)/2015, ФУПМ|Практические задания для студентов ФУПМ МФТИ (2015 год)]] | ||
- | |||
[[Категория:Учебные курсы]] | [[Категория:Учебные курсы]] |
Версия 14:15, 20 февраля 2015
Курс знакомит студентов с основными задачами и методами прикладной статистики.
Цели курса — связать теорию и практику, научить студентов «видеть» статистические задачи в различных предметных областях и правильно применять методы прикладной статистики, показать на практических примерах возможности и ограничения статистических методов. Курс имеет скорее методологическую, чем математическую направленность и не содержит доказательств теорем.
Каждый метод описывается по единой схеме:
- постановка задачи;
- примеры прикладных задач из области экономики, социологии, производства, медицины;
- базовые предположения и границы применимости;
- описание метода (для методов проверки статистических гипотез: нулевая гипотеза и альтернативы, статистика, её функция распределения с эскизом графика, критическая область);
- достоинства, недостатки, ограничения, «подводные камни»;
- сравнение с другими методами.
Курс читается студентам 5 курса кафедры математических методов прогнозирования ВМиК МГУ с 2007 года и студентам 4 курса факультета управления и прикладной математики МФТИ с 2011 года. Предполагается, что студенты уже прослушали курсы теории вероятностей и математической статистики.
Программа курса
Введение
Обзор необходимых сведений из теории вероятностей и математической статистики.
- Понятия простой выборки и статистики. Примеры статистик: моменты, асимметрия и эксцесс, вариационный ряд и порядковые статистики, эмпирическое распределение.
- Статистические точечные оценки и их свойства: несмещённость, состоятельность, оптимальность, робастность.
- Интервальные оценки, понятия доверительного интервала и уровня доверия. Доверительные интервалы для среднего и медианы.
- Часто используемые распределения: нормальное, хи-квадрат, Фишера, Стьюдента, Бернулли, биномиальное, Пуассона.
- Проверка статистических гипотез, основные понятия: уровень значимости, достигаемый уровень значимости (p-value), ошибки I и II рода. Односторонние и двусторонние альтернативы.
- Свойства достигаемых уровней значимости. Статистическая и практическая значимость.
- Свойства критериев: несмещённость, состоятельность, мощность.
Параметрическая проверка гипотез
[Kanji, Кобзарь]
- Критерии нормальности: критерий хи-квадрат (Пирсона), критерий Шапиро-Уилка, критерии, основанные на различиях между эмпирической и теоретической функциями распределения, критерий Колмогорова-Смирнова (Лиллиефорса). Упрощённая проверка нормальности по асимметрии и эксцессу: критерий Жарка-Бера.
- Нормальные параметрические критерии для проверки гипотез: гипотезы о положении, гипотезы о рассеивании.
- Гипотеза о равенстве средних: критерий Стьюдента для одной и двух выборок, Z-критерий для одной и двух выборок, связанные выборки
- Гипотеза о равенстве дисперсий: критерий Фишера.
- Гипотезы о значениях параметра распределения Бернулли: сравнение значения параметра с заданным, сравнение параметров распределений двух выборок (случаи связанных и независимых выборок).
- Доверительный интервал для параметра распределения Бернулли: Вальда, Уилсона. Доверительные интервалы Уилсона для разности параметров двух выборок.
Непараметрическая проверка гипотез
[Кобзарь, Good, Wilcox]
- Критерии знаков: одновыборочный, для связанных выборок.
- Вариационный ряд, ранги и связки.
- Ранговые критерии: критерий Уилкоксона-Манна-Уитни, критерий Уилкоксона двухвыборочный, критерий Уилкоксона для связанных выборок, критерий Зигеля-Тьюки.
- Перестановочные критерии. Проверка гипотез о положении (одновыборочный, для связанных выборок, для независимых выборок), проверка гипотезы о рассеивании.
- Двухвыборочные критерии согласия: Колмогорова-Смирнова, Крамера-фон Мизеса (Андерсона).
- Функция сдвига и доверительная лента для неё.
Множественная проверка гипотез
[Bretz, Dickhaus]
- Множественная проверка гипотез. Примеры задач. Меры числа ошибок первого рода.
- FWER, поправка Бонферрони.
- Нисходящие процедуры множественной проверки: общий вид, метод Холма.
- Процедуры множественной проверки гипотез при наличии дополнительной информации о признаках: независимость, subset pivotality, positive orthant dependence.
- Оценка числа верных нулевых гипотез и её применение.
- FDR, восходящие процедуры, методы Бенджамини-Хохберга и Бенджамини-Иекутиели.
Дисперсионный анализ (ANOVA)
[Tabachnick, Лагутин, Кобзарь]
- Однофакторная модель. Независимые выборки: критерии Фишера, Краскела-Уоллиса, Джонкхиера. Связанные выборки: критерии Фишера, Фридмана и Пейджа
- Модель со случайным эффектом, разделение дисперсии.
- Модель с фиксированным эффектом, уточнение различий: методы LSD и HSD, критерий Неменьи.
- Проверка гипотезы о равенстве дисперсий: критерии Бартлета и квадратов рангов.
- Двухфакторная модель. Взаимодействие факторов, его интерпретация. Двухфакторный нормальный анализ. Иерархический дизайн.
Анализ зависимостей
[Agresti, Лагутин].
- Корреляция Пирсона. Значимость коэффициента корреляции: критерий Стьюдента, перестановочный критерий.
- Ранговая корреляция: коэффициент корреляции Спирмена, коэффициент корреляции Кенделла, их значимость. Связь коэффициентов корреляции.
- Частная корреляция, значимость коэффициента частной корреляции (критерий Стьюдента).
- Множественная корреляция, значимость коэффициента множественной корреляции (критерий Фишера).
- Таблица сопряженности . Проверка гипотезы независимости категориальных величин с помощью критериев хи-квадрат и G-квадрат. Коэффициент V Крамера, коэффициент для порядковых величин.
- Таблица сопряженности . Проверка гипотезы независимости бинарных величин с помощью точного критерия Фишера. Корреляция Мэтьюса.
- Парадокс хи-квадрат.
Линейный регрессионный анализ
[Wooldridge]
- Многомерная линейная регрессия. Примеры прикладных задач. Метод наименьших квадратов.
- Несимметричность решения задачи одномерной регрессии относительно признака и отклика, связь с коэффициентом корреляции. Остаточная сумма квадратов (RSS). Коэффициент детерминации
- Предположения Гаусса-Маркова. Статистические свойства МНК-оценок в отсутствие предположения нормальности.
- Факторы, влияющие на дисперсию оценок коэффициентов модели. Мультиколлинеарность.
- Кодирование нечисловых признаков, фиктивные переменные. Dummy- и deviation-кодирование.
- Статистические свойства МНК-оценок при добавлении предположения нормальности. Доверительные интервалы для дисперсии шума, коэффициентов регрессии, прогнозируемого значения отклика.
- Анализ структуры линейной регрессионной модели. Значимость коэффициентов линейной регрессии: проверка равенства коэффициентов нулю и константе, вложенные модели линейной регрессии, критерий Фишера, запись критерия Фишера через коэффициент детерминации. Связь между критериями Фишера и Стьюдента. Пошаговая регрессия. Эксперимент Фридмана.
- Сравнение невложенных моделей: приведённый коэффициент детерминации, критерий Давидсона-Маккиннона.
- Анализ регрессионных остатков: визуальный анализ, проверка гипотез несмещённости, гомоскедастичности (критерий Бройша-Пагана), нормальности.
- Обработка выбросов, расстояние Кука.
- Метод Бокса-Кокса для преобразования отклика. Доверительный интервал для параметра метода.
- Устойчивая оценка дисперсии Уайта, её модификации.
Обобщения линейной регрессии
[Hosmer]
- Постановка задачи логистической регрессии, повторяемый эксперимент с фиксированными уровнями фактора, неповторяемый эксперимент со случайными уровнями фактора. Логит, его интерпретация. Интерпретация коэффициентов логистической регрессии (бинарный, количественный признак).
- Оценка параметров модели методом максимального правдоподобия. Возможные причины отсутствия сходимости.
- Анализ модели логистической регрессии: оценка значимости коэффициентов (критерии Вальда и отношения правдоподобия), построение доверительных интервалов. Оценка значимости категориальных предикторов. Проверка линейности логита по признаку. Признаки мультиколлинеарности. Остатки Пирсона, аналог расстояния Кука.
- Содержательный отбор признаков.
- Классификация на основе логистической регрессии: чувствительность, специфичность, выбор порога.
[Cameron]
- Регрессия натурального признака. Пуассоновская модель.
- Методы оценки дисперсии коэффициентов. Доверительные интервалы. Меры качества модели.
- Предположение о равенстве матожидания и дисперсии и его проверка. Отрицательная биномиальная и пороговая модели.
[Hastie]
- Проблема мультиколлинеарности. Методы понижения размерности: ридж-регрессия, лассо Тибширани, эластичная сеть. Выбор параметра регуляризации.
Материалы занятий: часть 1, часть 2
Анализ временных рядов
[Hyndman, Лукашин]
- Временной ряд. Основные компоненты эконометрических временных рядов: тренд, сезонность. Календарные эффекты.
- Анализ остатков. Автокорреляционная функция. Коррелограмма и её интерпретация. Проверка гипотезы о равенстве нулю автокорреляции и группы автокорреляций (критерий Льюнга-Бокса). Проверка гипотезы стационарности (критерий KPSS).
- Меры качества прогнозов, примеры оценок. Информационные критерии. U-коэффициент Тейла.
- Сравнение качества двух прогнозов. Непараметрические критерии, критерий Диболда-Мариано, его модификация для маленьких выборок.
- Сравнение качества нескольких прогнозов. Reality check Уайта, модификация Романо-Вольфа.
- Обнаружение структурных изменений. Критерий Чоу.
- Прогнозирование методами экспоненциального сглаживания. Простое экспоненциальное сглаживание Брауна, методы Хольта и Хольта-Уинтерса. Таксономия моделей ETS.
- Модели AR, MA, ARMA. Частичная автокорреляция. Подбор параметров модели по коррелограммам. Переход к ряду разностей, модель ARIMA.
- Сезонные эффекты и модели их учёта: SARMA, SARIMA.
- Учёт дополнительных признаков, модель regARIMA. Схема настройки параметров модели.
- Причинность по Грейнджеру. Критерий Грейнджера (для двух рядов, для множества рядов).
- Адаптивная селекция и композиция моделей прогнозирования. «Forecast combination puzzle». Агрегирующий алгоритм Вовка.
- Прогнозирование иерархических совокупностей рядов.
- Сложные сезонности в моделях экспоненциального сглаживания (TBATS) и авторегрессии.
Материалы занятий: часть 1, часть 2, часть 3.
Последовательный анализ
[Вальд, Mukhopadhyay]
- Применение в задачах проверки гипотез о значениях параметра биномиального распределения: сравнение значения с заданным, сравнение двух значений.
- Применение в задачах проверки гипотез о значениях параметров нормального распределения: сравнение значения среднего с заданными (симметричный и несимметричный варианты), сравнение значения дисперсии с заданным.
- Последовательные доверительные интервалы для среднего нормальной совокупности с неизвестной дисперсией (двухэтапная, последовательная процедуры). Процедуры для разности средних двух нормальных совокупностей, случаи равных и неравных дисперсий.
- Непараметрические последовательные доверительные интервалы для среднего и медианы.
Анализ выживаемости
- Анализ выживаемости. Функция выживаемости и функция интенсивности рисков. Процедура Каплана-Мейера. Доверительный интервал выживаемости.
- Сравнение двух функций выживаемости: логранговый критерий, критерий Гехана.
Анализ панельных данных
[Магнус]
- Примеры эконометрических задач: анализ стран, фирм, домашних хозяйств, телезрителей.
- Объединённая модель панельных данных.
- Модель панельных данных с фиксированными эффектами.
- Модель панельных данных со случайными эффектами.
- Модель панельных данных с временны́ми эффектами.
- Модель несвязанных регрессий.
- Проблема выбора модели: F-тест Фишера, критерий множителей Лагранжа, критерий Хаусмана.
- Ротационная панель.
Литература
- Вальд, А. Последовательный анализ. — М.: Физматлит, 1960.
- Лагутин, М.Б. Наглядная математическая статистика. В двух томах. — М.: П-центр, 2003.
- Лукашин, Ю.П. Адаптивные методы краткосрочного прогнозирования временных рядов. — М.: Финансы и статистика, 2003.
- Кобзарь, А.И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Магнус, Я.Р., Катышев, П.К., Пересецкий, А.А. Эконометрика. Начальный курс: Учеб. — 7-е изд., испр. — М.: Дело, 2005.
- Agresti, A. Categorical Data Analysis. — Hoboken: John Wiley & Sons, 2013.
- Bretz, F., Hothorn, T., Westfall, P. Multiple Comparisons Using R. — Boca Raton: Chapman and Hall/CRC, 2010.
- Cameron, A.A., Trivedi, P.K. Regression Analysis of Count Data. — Cambridge: Cambridge University Press, 2013.
- Dickhaus, T. Simultaneous Statistical Inference With Applications in the Life Sciences. — Heidelberg: Springer, 2014.
- Good, P. Permutation, Parametric and Bootstrap Tests of Hypotheses: A Practical Guide to Resampling Methods for Testing Hypotheses. — New York: Springer, 2005.
- Hastie, T., Tibshirani, R., Friedman, J. The Elements of Statistical Learning, 2nd edition. — Springer, 2009. — 533 p. (подробнее)
- Hosmer, D.W., Lemeshow S., Sturdivant, R.X. Applied Logistic Regression. — Hoboken: John Wiley & Sons, 2013.
- Hyndman, R.J., Athanasopoulos G. Forecasting: principles and practice. — OTexts, 2013. https://www.otexts.org/book/fpp
- Kanji, G.K. 100 statistical tests. — London: SAGE Publications, 2006.
- Mukhopadhyay, N., de Silva, B. M. Sequential methods and their applications. — Boca Raton: Chapman and Hall/CRC, 2009.
- Tabachnick, B.G., Fidell, L.S. Using Multivariate Statistics. — Boston: Pearson Education, 2012.
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing. — Academic Press, 2012.
- Wooldridge, J. Introductory Econometrics: A Modern Approach. — Mason: South-Western Cengage Learning, 2013.